#practiceLinkDiv { display: none !important; }Glede na binarno matriko, ki vsebuje samo 0 in 1, moramo najti vsoto pokritosti vseh ničel matrike, kjer je pokritost za določeno 0 definirana kot skupno število enic okoli ničle v smeri levo desno navzgor in spodaj. Tisti so lahko kjer koli, dokler ne kažejo kotiček v smeri.
Primeri:
Input : mat[][] = {0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0} Output : 20 First four zeros are surrounded by only one 1. So coverage for zeros in first row is 1 + 1 + 1 + 1 Zeros in second row are surrounded by three 1's. Note that there is no 1 above. There are 1's in all other three directions. Coverage of zeros in second row = 3 + 3. Similarly counting for others also we get overall count as below. 1 + 1 + 1 + 1 + 3 + 3 + 2 + 2 + 2 + 2 + 2 = 20 Input : mat[][] = {1 1 1 0 1 0 0 1} Output : 8 Coverage of first zero is 2 Coverages of other two zeros is 3 Total coverage = 2 + 3 + 3 = 8Recommended Practice Pokritost vseh ničel v binarni matriki Poskusite! A preprosta rešitev ta problem rešimo tako, da neodvisno preštejemo enice okoli ničle, tj. izvedemo zanko štirikrat v vsako smer za vsako celico za dano matriko. Kadar koli v kateri koli zanki najdemo 1, zanko prekinemo in rezultat povečamo za 1.
An učinkovita rešitev je narediti naslednje.
- Prečkaj vse vrstice od leve proti desni in povečaj rezultat, če je 1 že viden (v trenutnem prehodu) in je trenutni element 0.
- Prečkaj vse vrstice od desne proti levi in povečaj rezultat, če je 1 že viden (v trenutnem prehodu) in je trenutni element 0.
- Preletite vse stolpce od vrha do dna in povečajte rezultat, če je 1 že viden (v trenutnem prehodu) in je trenutni element 0.
- Preletite vse stolpce od spodaj navzgor in povečajte rezultat, če je 1 že viden (v trenutnem prehodu) in je trenutni element 0.
V spodnji kodi je vzeta logična spremenljivka isOne, ki postane resnična takoj, ko se v trenutnem prečkanju pojavi ena za vse ničle, potem ko se rezultat iteracije poveča z enim istim postopkom, ki se uporabi v vseh štirih smereh, da se dobi končni odgovor. IsOne ponastavimo na false po vsakem prehodu.
C++// C++ program to get total coverage of all zeros in // a binary matrix #include using namespace std; #define R 4 #define C 4 // Returns total coverage of all zeros in mat[][] int getTotalCoverageOfMatrix(int mat[R][C]) { int res = 0; // looping for all rows of matrix for (int i = 0; i < R; i++) { bool isOne = false; // 1 is not seen yet // looping in columns from left to right // direction to get left ones for (int j = 0; j < C; j++) { // If one is found from left if (mat[i][j] == 1) isOne = true; // If 0 is found and we have found // a 1 before. else if (isOne) res++; } // Repeat the above process for right to // left direction. isOne = false; for (int j = C-1; j >= 0; j--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns for up and down // directions. for (int j = 0; j < C; j++) { bool isOne = false; // 1 is not seen yet for (int i = 0; i < R; i++) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (int i = R-1; i >= 0; i--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } return res; } // Driver code to test above methods int main() { int mat[R][C] = {{0 0 0 0} {1 0 0 1} {0 1 1 0} {0 1 0 0} }; cout << getTotalCoverageOfMatrix(mat); return 0; }
Java // Java program to get total // coverage of all zeros in // a binary matrix import java .io.*; class GFG { static int R = 4; static int C = 4; // Returns total coverage // of all zeros in mat[][] static int getTotalCoverageOfMatrix(int [][]mat) { int res = 0; // looping for all // rows of matrix for (int i = 0; i < R; i++) { // 1 is not seen yet boolean isOne = false; // looping in columns from // left to right direction // to get left ones for (int j = 0; j < C; j++) { // If one is found // from left if (mat[i][j] == 1) isOne = true; // If 0 is found and we // have found a 1 before. else if (isOne) res++; } // Repeat the above // process for right // to left direction. isOne = false; for (int j = C - 1; j >= 0; j--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns // for up and down directions. for (int j = 0; j < C; j++) { // 1 is not seen yet boolean isOne = false; for (int i = 0; i < R; i++) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (int i = R - 1; i >= 0; i--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } return res; } // Driver code static public void main (String[] args) { int [][]mat = {{0 0 0 0} {1 0 0 1} {0 1 1 0} {0 1 0 0}}; System.out.println( getTotalCoverageOfMatrix(mat)); } } // This code is contributed by anuj_67.
Python3 # Python3 program to get total coverage of all zeros in # a binary matrix R = 4 C = 4 # Returns total coverage of all zeros in mat[][] def getTotalCoverageOfMatrix(mat): res = 0 # looping for all rows of matrix for i in range(R): isOne = False # 1 is not seen yet # looping in columns from left to right # direction to get left ones for j in range(C): # If one is found from left if (mat[i][j] == 1): isOne = True # If 0 is found and we have found # a 1 before. else if (isOne): res += 1 # Repeat the above process for right to # left direction. isOne = False for j in range(C - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 # Traversing across columns for up and down # directions. for j in range(C): isOne = False # 1 is not seen yet for i in range(R): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 isOne = False for i in range(R - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 return res # Driver code mat = [[0 0 0 0][1 0 0 1][0 1 1 0][0 1 0 0]] print(getTotalCoverageOfMatrix(mat)) # This code is contributed by shubhamsingh10
C# // C# program to get total coverage // of all zeros in a binary matrix using System; class GFG { static int R = 4; static int C = 4; // Returns total coverage of all zeros in mat[][] static int getTotalCoverageOfMatrix(int []mat) { int res = 0; // looping for all rows of matrix for (int i = 0; i < R; i++) { // 1 is not seen yet bool isOne = false; // looping in columns from left to // right direction to get left ones for (int j = 0; j < C; j++) { // If one is found from left if (mat[ij] == 1) isOne = true; // If 0 is found and we // have found a 1 before. else if (isOne) res++; } // Repeat the above process for // right to left direction. isOne = false; for (int j = C-1; j >= 0; j--) { if (mat[ij] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns // for up and down directions. for (int j = 0; j < C; j++) { // 1 is not seen yet bool isOne = false; for (int i = 0; i < R; i++) { if (mat[ij] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (int i = R-1; i >= 0; i--) { if (mat[ij] == 1) isOne = true; else if (isOne) res++; } } return res; } // Driver code to test above methods static public void Main () { int []mat = {{0 0 0 0} {1 0 0 1} {0 1 1 0} {0 1 0 0}}; Console.WriteLine(getTotalCoverageOfMatrix(mat)); } } // This code is contributed by vt_m.
JavaScript <script> // Javascript program to get total // coverage of all zeros in // a binary matrix let R = 4; let C = 4; // Returns total coverage // of all zeros in mat[][] function getTotalCoverageOfMatrix(mat) { let res = 0; // looping for all // rows of matrix for (let i = 0; i < R; i++) { // 1 is not seen yet let isOne = false; // looping in columns from // left to right direction // to get left ones for (let j = 0; j < C; j++) { // If one is found // from left if (mat[i][j] == 1) isOne = true; // If 0 is found and we // have found a 1 before. else if (isOne) res++; } // Repeat the above // process for right // to left direction. isOne = false; for (let j = C - 1; j >= 0; j--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } // Traversing across columns // for up and down directions. for (let j = 0; j < C; j++) { // 1 is not seen yet let isOne = false; for (let i = 0; i < R; i++) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } isOne = false; for (let i = R - 1; i >= 0; i--) { if (mat[i][j] == 1) isOne = true; else if (isOne) res++; } } return res; } let mat = [[0 0 0 0] [1 0 0 1] [0 1 1 0] [0 1 0 0]]; document.write(getTotalCoverageOfMatrix(mat)); </script>
Izhod
20
Časovna zahtevnost: O(n2)
Pomožni prostor: O(1)
Ustvari kviz