logo

Vsota povprečja vseh podmnožic

Preizkusite na GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Glede na matriko arr[] N celih elementov je naloga najti vsoto povprečja vseh podmnožic te matrike.

imena mest v ZDA

primer:   

Input : arr[] = [2 3 5]  
Output : 23.33
Explanation : Subsets with their average are
[2] average = 2/1 = 2
[3] average = 3/1 = 3
[5] average = 5/1 = 5
[2 3] average = (2+3)/2 = 2.5
[2 5] average = (2+5)/2 = 3.5
[3 5] average = (3+5)/2 = 4
[2 3 5] average = (2+3+5)/3 = 3.33
Sum of average of all subset is
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33
Recommended Practice Vsota povprečja vseh podmnožic Poskusite!

Naivni pristop: Naivna rešitev je iteracija skozi vse možne podmnožice povprečje vseh in jih nato dodajajte enega za drugim, vendar bo to trajalo eksponentno dolgo in bo neizvedljivo za večje nize. 
Z zgledom lahko dobimo vzorec  



arr = [a0 a1 a2 a3]  
sum of average =
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
(a1+a3)/2 + (a2+a3)/2 +
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 +
(a1+a2+a3)/3 +
(a0+a1+a2+a3)/4
If S = (a0+a1+a2+a3) then above expression
can be rearranged as below
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

Koeficient s števci je mogoče razložiti na naslednji način. Predpostavimo, da ponavljamo podmnožice s K elementi, potem bo imenovalec K, števec pa r*S, kjer 'r' označuje, kolikokrat bo določen element matrike dodan med ponavljanjem podmnožic enake velikosti. Z inšpekcijo lahko vidimo, da bo r nCr(N - 1 n - 1), ker moramo po postavitvi enega elementa v seštevek izbrati (n – 1) elementov izmed (N - 1) elementov, tako da bo vsak element imel frekvenco nCr(N - 1 n - 1), medtem ko upoštevamo podmnožice enake velikosti, saj vsi elementi sodelujejo pri seštevanju enako številokrat, to bo tudi frekvenca S in bo števec v končnem izražanje. 

V spodnji kodi nCr je implementiran z metodo dinamičnega programiranja več o tem si lahko preberete tukaj 

C++
// C++ program to get sum of average of all subsets #include    using namespace std; // Returns value of Binomial Coefficient C(n k) int nCr(int n int k) {  int C[n + 1][k + 1];  int i j;  // Calculate value of Binomial Coefficient in bottom  // up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;  // Calculate value using previously stored  // values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k]; } // method returns sum of average of all subsets double resultOfAllSubsets(int arr[] int N) {  double result = 0.0; // Initialize result  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result; } // Driver code to test above methods int main() {  int arr[] = { 2 3 5 7 };  int N = sizeof(arr) / sizeof(int);  cout << resultOfAllSubsets(arr N) << endl;  return 0; } 
Java
// java program to get sum of // average of all subsets import java.io.*; class GFG {  // Returns value of Binomial  // Coefficient C(n k)  static int nCr(int n int k)  {  int C[][] = new int[n + 1][k + 1];  int i j;  // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;  // Calculate value using  // previously stored values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k];  }  // method returns sum of average of all subsets  static double resultOfAllSubsets(int arr[] int N)  {  // Initialize result  double result = 0.0;  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result;  }  // Driver code to test above methods  public static void main(String[] args)  {  int arr[] = { 2 3 5 7 };  int N = arr.length;  System.out.println(resultOfAllSubsets(arr N));  } } // This code is contributed by vt_m 
C#
// C# program to get sum of // average of all subsets using System; class GFG {    // Returns value of Binomial  // Coefficient C(n k)  static int nCr(int n int k)  {  int[ ] C = new int[n + 1 k + 1];  int i j;  // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.Min(i k); j++)   {  // Base Cases  if (j == 0 || j == i)  C[i j] = 1;  // Calculate value using  // previously stored values  else  C[i j] = C[i - 1 j - 1] + C[i - 1 j];  }  }  return C[n k];  }  // method returns sum of average   // of all subsets  static double resultOfAllSubsets(int[] arr int N)  {  // Initialize result  double result = 0.0;  // Find sum of elements  int sum = 0;  for (int i = 0; i < N; i++)  sum += arr[i];  // looping once for all subset   // of same size  for (int n = 1; n <= N; n++)  /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (double)(sum * (nCr(N - 1 n - 1))) / n;  return result;  }  // Driver code to test above methods  public static void Main()  {  int[] arr = { 2 3 5 7 };  int N = arr.Length;  Console.WriteLine(resultOfAllSubsets(arr N));  } } // This code is contributed by Sam007 
JavaScript
<script>  // javascript program to get sum of  // average of all subsets    // Returns value of Binomial  // Coefficient C(n k)  function nCr(n k)  {  let C = new Array(n + 1);  for (let i = 0; i <= n; i++)   {  C[i] = new Array(k + 1);  for (let j = 0; j <= k; j++)   {  C[i][j] = 0;  }  }  let i j;    // Calculate value of Binomial  // Coefficient in bottom up manner  for (i = 0; i <= n; i++) {  for (j = 0; j <= Math.min(i k); j++) {  // Base Cases  if (j == 0 || j == i)  C[i][j] = 1;    // Calculate value using  // previously stored values  else  C[i][j] = C[i - 1][j - 1] + C[i - 1][j];  }  }  return C[n][k];  }    // method returns sum of average of all subsets  function resultOfAllSubsets(arr N)  {  // Initialize result  let result = 0.0;    // Find sum of elements  let sum = 0;  for (let i = 0; i < N; i++)  sum += arr[i];    // looping once for all subset of same size  for (let n = 1; n <= N; n++)    /* each element occurs nCr(N-1 n-1) times while  considering subset of size n */  result += (sum * (nCr(N - 1 n - 1))) / n;    return result;  }    let arr = [ 2 3 5 7 ];  let N = arr.length;  document.write(resultOfAllSubsets(arr N));   </script> 
PHP
 // PHP program to get sum  // of average of all subsets // Returns value of Binomial // Coefficient C(n k) function nCr($n $k) { $C[$n + 1][$k + 1] = 0; $i; $j; // Calculate value of Binomial // Coefficient in bottom up manner for ($i = 0; $i <= $n; $i++) { for ($j = 0; $j <= min($i $k); $j++) { // Base Cases if ($j == 0 || $j == $i) $C[$i][$j] = 1; // Calculate value using  // previously stored values else $C[$i][$j] = $C[$i - 1][$j - 1] + $C[$i - 1][$j]; } } return $C[$n][$k]; } // method returns sum of // average of all subsets function resultOfAllSubsets($arr $N) { // Initialize result $result = 0.0; // Find sum of elements $sum = 0; for ($i = 0; $i < $N; $i++) $sum += $arr[$i]; // looping once for all  // subset of same size for ($n = 1; $n <= $N; $n++) /* each element occurs nCr(N-1   n-1) times while considering   subset of size n */ $result += (($sum * (nCr($N - 1 $n - 1))) / $n); return $result; } // Driver Code $arr = array( 2 3 5 7 ); $N = sizeof($arr) / sizeof($arr[0]); echo resultOfAllSubsets($arr $N) ; // This code is contributed by nitin mittal.  ?> 
Python3
# Python3 program to get sum # of average of all subsets # Returns value of Binomial # Coefficient C(n k) def nCr(n k): C = [[0 for i in range(k + 1)] for j in range(n + 1)] # Calculate value of Binomial  # Coefficient in bottom up manner for i in range(n + 1): for j in range(min(i k) + 1): # Base Cases if (j == 0 or j == i): C[i][j] = 1 # Calculate value using  # previously stored values else: C[i][j] = C[i-1][j-1] + C[i-1][j] return C[n][k] # Method returns sum of # average of all subsets def resultOfAllSubsets(arr N): result = 0.0 # Initialize result # Find sum of elements sum = 0 for i in range(N): sum += arr[i] # looping once for all subset of same size for n in range(1 N + 1): # each element occurs nCr(N-1 n-1) times while # considering subset of size n */ result += (sum * (nCr(N - 1 n - 1))) / n return result # Driver code  arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) # This code is contributed by Anant Agarwal. 

Izhod
63.75

Časovna zapletenost: O(n3)
Pomožni prostor: O(n2)

Učinkovit pristop: Optimizacija prostora O(1)
Za optimizacijo prostorske kompleksnosti zgornjega pristopa lahko uporabimo učinkovitejši pristop, ki se izogne ​​potrebi po celotni matriki C[][] za shranjevanje binomskih koeficientov. Namesto tega lahko uporabimo kombinirano formulo za neposredni izračun binomskega koeficienta, kadar je to potrebno.

Izvedbeni koraki:

  • Ponovite elemente matrike in izračunajte vsoto vseh elementov.
  • Ponovite vsako velikost podnabora od 1 do N.
  • Znotraj zanke izračunajte povprečje vsote elementov, pomnožene z binomskim koeficientom za velikost podmnožice. Rezultatu dodajte izračunano povprečje.
  • Vrnite končni rezultat.

Izvedba:

C++
#include    using namespace std; // Method to calculate binomial coefficient C(n k) int binomialCoeff(int n int k) {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++)  {  res *= (n - i);  res /= (i + 1);  }  return res; } // Method to calculate the sum of the average of all subsets double resultOfAllSubsets(int arr[] int N) {  double result = 0.0;  int sum = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sum += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double)(sum * binomialCoeff(N - 1 n - 1)) / n;  return result; } // Driver code to test the above methods int main() {  int arr[] = { 2 3 5 7 };  int N = sizeof(arr) / sizeof(int);  cout << resultOfAllSubsets(arr N) << endl;  return 0; } 
Java
import java.util.Arrays; public class Main {  // Method to calculate binomial coefficient C(n k)  static int binomialCoeff(int n int k) {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++) {  res *= (n - i);  res /= (i + 1);  }  return res;  }  // Method to calculate the sum of the average of all subsets  static double resultOfAllSubsets(int arr[] int N) {  double result = 0.0;  int sum = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sum += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double) (sum * binomialCoeff(N - 1 n - 1)) / n;  return result;  }  // Driver code to test the above methods  public static void main(String[] args) {  int arr[] = {2 3 5 7};  int N = arr.length;  System.out.println(resultOfAllSubsets(arr N));  } } 
C#
using System; public class MainClass {  // Method to calculate binomial coefficient C(n k)  static int BinomialCoeff(int n int k)  {  int res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (int i = 0; i < k; i++)  {  res *= (n - i);  res /= (i + 1);  }  return res;  }  // Method to calculate the sum of the average of all subsets  static double ResultOfAllSubsets(int[] arr int N)  {  double result = 0.0;  int sumVal = 0;  // Calculate the sum of elements  for (int i = 0; i < N; i++)  sumVal += arr[i];  // Loop for each subset size  for (int n = 1; n <= N; n++)  result += (double)(sumVal * BinomialCoeff(N - 1 n - 1)) / n;  return result;  }  // Driver code to test the above methods  public static void Main()  {  int[] arr = { 2 3 5 7 };  int N = arr.Length;  Console.WriteLine(ResultOfAllSubsets(arr N));  } } 
JavaScript
// Function to calculate binomial coefficient C(n k) function binomialCoeff(n k) {  let res = 1;  // Since C(n k) = C(n n-k)  if (k > n - k)  k = n - k;  // Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1]  for (let i = 0; i < k; i++) {  res *= (n - i);  res /= (i + 1);  }  return res; } // Function to calculate the sum of the average of all subsets function resultOfAllSubsets(arr) {  let result = 0.0;  let sum = arr.reduce((acc val) => acc + val 0);  // Loop for each subset size  for (let n = 1; n <= arr.length; n++) {  result += (sum * binomialCoeff(arr.length - 1 n - 1)) / n;  }  return result; } const arr = [2 3 5 7]; console.log(resultOfAllSubsets(arr)); 
Python3
# Method to calculate binomial coefficient C(n k) def binomialCoeff(n k): res = 1 # Since C(n k) = C(n n-k) if k > n - k: k = n - k # Calculate value of [n * (n-1) * ... * (n-k+1)] / [k * (k-1) * ... * 1] for i in range(k): res *= (n - i) res //= (i + 1) return res # Method to calculate the sum of the average of all subsets def resultOfAllSubsets(arr N): result = 0.0 sum_val = 0 # Calculate the sum of elements for i in range(N): sum_val += arr[i] # Loop for each subset size for n in range(1 N + 1): result += (sum_val * binomialCoeff(N - 1 n - 1)) / n return result # Driver code to test the above methods arr = [2 3 5 7] N = len(arr) print(resultOfAllSubsets(arr N)) 


Izhod

63.75

Časovna zapletenost: O(n^2)
Pomožni prostor: O(1)



 

Ustvari kviz