Quickselect je izbirni algoritem za iskanje k-tega najmanjšega elementa na neurejenem seznamu. Povezan je z hitro razvrščanje algoritem za razvrščanje.
Primeri:
Input: arr[] = {7, 10, 4, 3, 20, 15} k = 3 Output: 7 Input: arr[] = {7, 10, 4, 3, 20, 15} k = 4 Output: 10> Algoritem je podoben QuickSortu. Razlika je v tem, da se namesto ponavljanja za obe strani (po iskanju vrtišča) ponavlja samo za del, ki vsebuje k-ti najmanjši element. Logika je preprosta, če je indeks particioniranega elementa večji od k, se ponovimo za levi del. Če je indeks enak k, smo našli k-ti najmanjši element in se vrnemo. Če je indeks manjši od k, se ponovimo za desni del. To zmanjša pričakovano kompleksnost z O(n log n) na O(n), z najslabšim primerom O(n^2).
function quickSelect(list, left, right, k) if left = right return list[left] Select a pivotIndex between left and right pivotIndex := partition(list, left, right, pivotIndex) if k = pivotIndex return list[k] else if k C++14 // CPP program for implementation of QuickSelect #include using namespace std; // Standard partition process of QuickSort(). // It considers the last element as pivot // and moves all smaller element to left of // it and greater elements to right int partition(int arr[], int l, int r) { int x = arr[r], i = l; for (int j = l; j <= r - 1; j++) { if (arr[j] <= x) { swap(arr[i], arr[j]); i++; } } swap(arr[i], arr[r]); return i; } // This function returns k'th smallest // element in arr[l..r] using QuickSort // based method. ASSUMPTION: ALL ELEMENTS // IN ARR[] ARE DISTINCT int kthSmallest(int arr[], int l, int r, int k) { // If k is smaller than number of // elements in array if (k>0 && k<= r - l + 1) { // Partition the array around last // element and get position of pivot // element in sorted array int index = partition(arr, l, r); // If position is same as k if (index - l == k - 1) return arr[index]; // If position is more, recur // for left subarray if (index - l>k - 1) vrni kthNajmanjši (arr, l, indeks - 1, k); // Drugače se ponovi za desno podmatriko vrni kthSmallest(arr, index + 1, r, k - index + l - 1); } // Če je k več kot število // elementov v matriki return INT_MAX; } // Program gonilnika za testiranje zgornjih metod int main() { int arr[] = { 10, 4, 5, 8, 6, 11, 26 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; cout<< 'K-th smallest element is ' << kthSmallest(arr, 0, n - 1, k); return 0; } Java // Java program of Quick Select import java.util.Arrays; class GFG { // partition function similar to quick sort // Considers last element as pivot and adds // elements with less value to the left and // high value to the right and also changes // the pivot position to its respective position // in the final array. public static int partition(int[] arr, int low, int high) { int pivot = arr[high], pivotloc = low; for (int i = low; i <= high; i++) { // inserting elements of less value // to the left of the pivot location if (arr[i] int temp = arr[i]; arr[i] = arr[pivotloc]; arr[pivotloc] = temp; pivotloc++; } } // swapping pivot to the final pivot location int temp = arr[high]; arr[high] = arr[pivotloc]; arr[pivotloc] = temp; return pivotloc; } // finds the kth position (of the sorted array) // in a given unsorted array i.e this function // can be used to find both kth largest and // kth smallest element in the array. // ASSUMPTION: all elements in arr[] are distinct public static int kthSmallest(int[] arr, int low, int high, int k) { // find the partition int partition = partition(arr, low, high); // if partition value is equal to the kth position, // return value at k. if (partition == k - 1) return arr[partition]; // if partition value is less than kth position, // search right side of the array. else if (partition 1) return kthSmallest(arr, partition + 1, high, k); // if partition value is more than kth position, // search left side of the array. else return kthSmallest(arr, low, partition - 1, k); } // Driver Code public static void main(String[] args) { int[] array = new int[] { 10, 4, 5, 8, 6, 11, 26 }; int[] arraycopy = new int[] { 10, 4, 5, 8, 6, 11, 26 }; int kPosition = 3; int length = array.length; if (kPosition>dolžina) { System.out.println('Indeks zunaj meja'); } else { // najdi k-to najmanjšo vrednost System.out.println( 'K-ti najmanjši element v nizu : ' + kthSmallest(arraycopy, 0, length - 1, kPosition)); } } } // To kodo je prispevala Saiteja Pamulapati Python3 # Python3 program Quick Select # Standardni proces particije QuickSort(). # Zadnji element obravnava kot vrtišče # in premakne vse manjše elemente levo od # njega in večje elemente na desno def partition(arr, l, r): x = arr[r] i = l za j v obsegu(l, r): če arr[j]<= x: arr[i], arr[j] = arr[j], arr[i] i += 1 arr[i], arr[r] = arr[r], arr[i] return i # finds the kth position (of the sorted array) # in a given unsorted array i.e this function # can be used to find both kth largest and # kth smallest element in the array. # ASSUMPTION: all elements in arr[] are distinct def kthSmallest(arr, l, r, k): # if k is smaller than number of # elements in array if (k>0 in k<= r - l + 1): # Partition the array around last # element and get position of pivot # element in sorted array index = partition(arr, l, r) # if position is same as k if (index - l == k - 1): return arr[index] # If position is more, recur # for left subarray if (index - l>k - 1): vrni kthNajmanjši(arr, l, indeks - 1, k) # Drugače se ponovi za desno podmatriko vrni kthNajmanjši(arr, indeks + 1, r, k - indeks + l - 1) print('Indeks izven bound') # Koda gonilnika arr = [ 10, 4, 5, 8, 6, 11, 26 ] n = len(arr) k = 3 print('K-ti najmanjši element je ', end = ' ') print(kthSmallest(arr, 0, n - 1, k)) # To kodo je prispeval Muskan Kalra. C# // program C# za hitro izbiro s sistemom; class GFG { // funkcija razdeljevanja, podobna hitremu razvrščanju // Zadnji element obravnava kot vrtišče in doda // elemente z manjšo vrednostjo na levo in // visoko vrednostjo na desno ter prav tako spremeni // položaj vrtišča v njegov ustrezni položaj / / v matriki samo za branje. statične int particije (int []arr,int nizko, int visoko) { int pivot = arr[visoko], pivotloc = nizko, temp; za (int i = nizko; i<= high; i++) { // inserting elements of less value // to the left of the pivot location if(arr[i] { temp = arr[i]; arr[i] = arr[pivotloc]; arr[pivotloc] = temp; pivotloc++; } } // swapping pivot to the readonly pivot location temp = arr[high]; arr[high] = arr[pivotloc]; arr[pivotloc] = temp; return pivotloc; } // finds the kth position (of the sorted array) // in a given unsorted array i.e this function // can be used to find both kth largest and // kth smallest element in the array. // ASSUMPTION: all elements in []arr are distinct static int kthSmallest(int[] arr, int low, int high, int k) { // find the partition int partition = partitions(arr,low,high); // if partition value is equal to the kth position, // return value at k. if(partition == k) return arr[partition]; // if partition value is less than kth position, // search right side of the array. else if(partition return kthSmallest(arr, partition + 1, high, k ); // if partition value is more than kth position, // search left side of the array. else return kthSmallest(arr, low, partition - 1, k ); } // Driver Code public static void Main(String[] args) { int[] array = {10, 4, 5, 8, 6, 11, 26}; int[] arraycopy = {10, 4, 5, 8, 6, 11, 26}; int kPosition = 3; int length = array.Length; if(kPosition>dolžina) { Console.WriteLine('Indeks izven meja'); } else { // najdi k-to najmanjšo vrednost Console.WriteLine('K-ti najmanjši element v nizu : ' + kthSmallest(arraycopy, 0, length - 1, kPosition - 1)); } } } // To kodo je prispeval 29AjayKumar Javascript // Javascript program Quick Select // particijska funkcija, podobna hitremu razvrščanju // Zadnji element obravnava kot vrtilni in doda // elemente z manjšo vrednostjo na levi strani in // visoko vrednostjo v desno in prav tako spremeni // položaj vrtenja v njegov ustrezni položaj // v končnem nizu. funkcija _particija(arr, nizka, visoka) { let pivot = arr[visoka], pivotloc = nizka; za (naj i = nizko; i<= high; i++) { // inserting elements of less value // to the left of the pivot location if (arr[i] { let temp = arr[i]; arr[i] = arr[pivotloc]; arr[pivotloc] = temp; pivotloc++; } } // swapping pivot to the final pivot location let temp = arr[high]; arr[high] = arr[pivotloc]; arr[pivotloc] = temp; return pivotloc; } // finds the kth position (of the sorted array) // in a given unsorted array i.e this function // can be used to find both kth largest and // kth smallest element in the array. // ASSUMPTION: all elements in arr[] are distinct function kthSmallest(arr, low, high, k) { // find the partition let partition = _partition(arr, low, high); // if partition value is equal to the kth position, // return value at k. if (partition == k - 1) return arr[partition]; // if partition value is less than kth position, // search right side of the array. else if (partition return kthSmallest(arr, partition + 1, high, k); // if partition value is more than kth position, // search left side of the array. else return kthSmallest(arr, low, partition - 1, k); } // Driver Code let array = [ 10, 4, 5, 8, 6, 11, 26]; let arraycopy = [10, 4, 5, 8, 6, 11, 26 ]; let kPosition = 3; let length = array.length; if (kPosition>dolžina) {document.write('Indeks izven meja '); } else { // poišči kth najmanjšo vrednost document.write( 'K-th najmanjši element v nizu : ' + kthSmallest(arraycopy, 0, length - 1, kPosition)+' '); } // To kodo je prispeval rag2127 Izhod: K-ti najmanjši element je 6. Pomembne točke: Tako kot hitro razvrščanje je v praksi hiter, vendar ima slabo zmogljivost v najslabšem primeru. Uporablja se v. Postopek particije je enak kot QuickSort, razlikuje se le rekurzivna koda. Obstaja algoritem, ki najde k-ti najmanjši element v O(n) v najslabšem primeru, vendar QuickSelect v povprečju deluje bolje. Sorodna funkcija C++: std::nth_element v C++>