logo

Najmanjša kopica v Pythonu

A Min-kup je popolno binarno drevo, v katerem je vrednost v vsakem notranjem vozlišču manjša ali enaka vrednostim v podrejenih vozliščih.
Preslikava elementov kopice v matriko je trivialna: če je vozlišče shranjeno na indeksu k , potem je levi otrok je shranjen na indeksu 2k+1 in njegovo pravi otrok pri indeksu 2k+2 za Indeksiranje na podlagi 0 in za 1 indeksiranje na podlagi levi otrok bo pri 2k in desni otrok bo pri 2k+1 .

Primer najmanjše kopice:



 5 13 /  /  10 15 16 31 / /  /  30 41 51 100 41>

Kako je predstavljen Min Heap?
Min Heap je popolno binarno drevo. Najmanjša kopica je običajno predstavljena kot niz. Korenski element bo pri Prihod[0] . Za katero koli ith vozlišče, tj. Prihod[i] :

    Arr[(i -1) / 2] vrne svoje nadrejeno vozlišče. Arr[(2 * i) + 1] vrne svoje levo podrejeno vozlišče. Arr[(2 * i) + 2] vrne svoje desno podrejeno vozlišče.

Operacije na minimalni kopici:

    getMin() : Vrne korenski element Min Heap. Čas Zapletenost te operacije je O(1) . extractMin() : Odstrani najmanjši element iz MinHeap. Časovna zapletenost te operacije je O(Dnevnik n) ker mora ta operacija ohraniti lastnost kopice (s klicem heapify()) po odstranitvi korena. insert() : Vstavljanje novega ključa traja O(Dnevnik n) čas. Na koncu drevesa dodamo nov ključ. Če je novi ključ večji od nadrejenega, nam ni treba storiti ničesar. V nasprotnem primeru moramo iti navzgor, da popravimo kršeno lastnost kopice.

Spodaj je implementacija Min Heap v Pythonu –



metode java arraylist

Python3






# Python3 implementation of Min Heap> > import> sys> > class> MinHeap:> > >def> __init__(>self>, maxsize):> >self>.maxsize>=> maxsize> >self>.size>=> 0> >self>.Heap>=> [>0>]>*>(>self>.maxsize>+> 1>)> >self>.Heap[>0>]>=> ->1> *> sys.maxsize> >self>.FRONT>=> 1> > ># Function to return the position of> ># parent for the node currently> ># at pos> >def> parent(>self>, pos):> >return> pos>/>/>2> > ># Function to return the position of> ># the left child for the node currently> ># at pos> >def> leftChild(>self>, pos):> >return> 2> *> pos> > ># Function to return the position of> ># the right child for the node currently> ># at pos> >def> rightChild(>self>, pos):> >return> (>2> *> pos)>+> 1> > ># Function that returns true if the passed> ># node is a leaf node> >def> isLeaf(>self>, pos):> >return> pos>*>2> >>self>.size> > ># Function to swap two nodes of the heap> >def> swap(>self>, fpos, spos):> >self>.Heap[fpos],>self>.Heap[spos]>=> self>.Heap[spos],>self>.Heap[fpos]> > ># Function to heapify the node at pos> >def> minHeapify(>self>, pos):> > ># If the node is a non-leaf node and greater> ># than any of its child> >if> not> self>.isLeaf(pos):> >if> (>self>.Heap[pos]>>self>.Heap[>self>.leftChild(pos)]>or> >self>.Heap[pos]>>self>.Heap[>self>.rightChild(pos)]):> > ># Swap with the left child and heapify> ># the left child> >if> self>.Heap[>self>.leftChild(pos)] <>self>.Heap[>self>.rightChild(pos)]:> >self>.swap(pos,>self>.leftChild(pos))> >self>.minHeapify(>self>.leftChild(pos))> > ># Swap with the right child and heapify> ># the right child> >else>:> >self>.swap(pos,>self>.rightChild(pos))> >self>.minHeapify(>self>.rightChild(pos))> > ># Function to insert a node into the heap> >def> insert(>self>, element):> >if> self>.size>>=> self>.maxsize :> >return> >self>.size>+>=> 1> >self>.Heap[>self>.size]>=> element> > >current>=> self>.size> > >while> self>.Heap[current] <>self>.Heap[>self>.parent(current)]:> >self>.swap(current,>self>.parent(current))> >current>=> self>.parent(current)> > ># Function to print the contents of the heap> >def> Print>(>self>):> >for> i>in> range>(>1>, (>self>.size>/>/>2>)>+>1>):> >print>(>' PARENT : '>+> str>(>self>.Heap[i])>+>' LEFT CHILD : '>+> >str>(>self>.Heap[>2> *> i])>+>' RIGHT CHILD : '>+> >str>(>self>.Heap[>2> *> i>+> 1>]))> > ># Function to build the min heap using> ># the minHeapify function> >def> minHeap(>self>):> > >for> pos>in> range>(>self>.size>/>/>2>,>0>,>->1>):> >self>.minHeapify(pos)> > ># Function to remove and return the minimum> ># element from the heap> >def> remove(>self>):> > >popped>=> self>.Heap[>self>.FRONT]> >self>.Heap[>self>.FRONT]>=> self>.Heap[>self>.size]> >self>.size>->=> 1> >self>.minHeapify(>self>.FRONT)> >return> popped> > # Driver Code> if> __name__>=>=> '__main__'>:> > >print>(>'The minHeap is '>)> >minHeap>=> MinHeap(>15>)> >minHeap.insert(>5>)> >minHeap.insert(>3>)> >minHeap.insert(>17>)> >minHeap.insert(>10>)> >minHeap.insert(>84>)> >minHeap.insert(>19>)> >minHeap.insert(>6>)> >minHeap.insert(>22>)> >minHeap.insert(>9>)> >minHeap.minHeap()> > >minHeap.>Print>()> >print>(>'The Min val is '> +> str>(minHeap.remove()))>

>

replaceall v nizu java

>

Izhod:

The Min Heap is PARENT : 3 LEFT CHILD : 5 RIGHT CHILD :6 PARENT : 5 LEFT CHILD : 9 RIGHT CHILD :84 PARENT : 6 LEFT CHILD : 19 RIGHT CHILD :17 PARENT : 9 LEFT CHILD : 22 RIGHT CHILD :10 The Min val is 3>

Uporaba funkcij knjižnice:
Uporabljamo heapq razred za implementacijo Heaps v Python. Ta razred privzeto izvaja Min Heap.

Python3


datum na niz



# Python3 program to demonstrate working of heapq> > from> heapq>import> heapify, heappush, heappop> > # Creating empty heap> heap>=> []> heapify(heap)> > # Adding items to the heap using heappush function> heappush(heap,>10>)> heappush(heap,>30>)> heappush(heap,>20>)> heappush(heap,>400>)> > # printing the value of minimum element> print>(>'Head value of heap : '>+>str>(heap[>0>]))> > # printing the elements of the heap> print>(>'The heap elements : '>)> for> i>in> heap:> >print>(i, end>=> ' '>)> print>(>' '>)> > element>=> heappop(heap)> > # printing the elements of the heap> print>(>'The heap elements : '>)> for> i>in> heap:> >print>(i, end>=> ' '>)>

>

kako uporabljati delovno mizo mysql

>

Izhod:

Head value of heap : 10 The heap elements : 10 30 20 400 The heap elements : 20 30 400>