logo

Poiščite najdaljši palindrom, ki nastane z odstranjevanjem ali mešanjem znakov iz niza

Podan je niz, poiščite najdaljši palindrom, ki ga lahko sestavite tako, da iz niza odstranite ali premešate znake. Vrni samo en palindrom, če je več najdaljših nizov palindroma.

Primeri: 



  Input:    abc   Output:   a OR b OR c   Input:    aabbcc   Output:   abccba OR baccab OR cbaabc OR any other palindromic string of length 6.   Input:    abbaccd   Output:   abcdcba OR ...   Input:    aba   Output:   aba

Vsak palindromski niz lahko razdelimo na tri dele - na sredino in konec. Za palindromski niz lihe dolžine recimo 2n + 1 'beg' je sestavljen iz prvih n znakov niza, 'mid' pa bo sestavljen iz samo 1 znaka, tj. (n + 1)-ti znak in 'end' bo sestavljen iz zadnjih n znakov palindromskega niza. Za palindromski niz sode dolžine 2n bo 'mid' vedno prazen. Upoštevati je treba, da bo 'end' obratno od 'beg', da bo niz palindrom.

Ideja je, da v naši rešitvi uporabimo zgornje opazovanje. Ker je dovoljeno mešanje znakov, vrstni red znakov v vhodnem nizu ni pomemben. Najprej dobimo frekvenco vsakega znaka v vhodnem nizu. Potem bodo vsi znaki, ki se sodo pojavijo (recimo 2n) v vhodnem nizu, del izhodnega niza, saj lahko zlahka postavimo n znakov v 'začetni' niz in ostalih n znakov v 'končni' niz (z ohranitvijo palindromskega vrstnega reda). Za znake, ki se nenavadno pojavljajo (recimo 2n + 1), zapolnimo 'mid' z enim od vseh takih znakov. in preostalih 2n znakov je razdeljenih na polovice in dodanih na začetku in koncu.

Spodaj je izvedba zgornje ideje 



C++
// C++ program to find the longest palindrome by removing // or shuffling characters from the given string #include    using namespace std; // Function to find the longest palindrome by removing // or shuffling characters from the given string string findLongestPalindrome(string str) {  // to stores freq of characters in a string  int count[256] = { 0 };  // find freq of characters in the input string  for (int i = 0; i < str.size(); i++)  count[str[i]]++;  // Any palindromic string consists of three parts  // beg + mid + end  string beg = '' mid = '' end = '';  // solution assumes only lowercase characters are  // present in string. We can easily extend this  // to consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++)  {  // if the current character freq is odd  if (count[ch] & 1)  {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = ch;  // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  }  // if the current character freq is even  else  {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch]/2 ; i++)  beg.push_back(ch);  }  }  // end will be reverse of beg  end = beg;  reverse(end.begin() end.end());  // return palindrome string  return beg + mid + end; } // Driver code int main() {  string str = 'abbaccd';  cout << findLongestPalindrome(str);  return 0; } 
Java
// Java program to find the longest palindrome by removing // or shuffling characters from the given string class GFG { // Function to find the longest palindrome by removing // or shuffling characters from the given string  static String findLongestPalindrome(String str) {  // to stores freq of characters in a string  int count[] = new int[256];  // find freq of characters in the input string  for (int i = 0; i < str.length(); i++) {  count[str.charAt(i)]++;  }  // Any palindromic string consists of three parts  // beg + mid + end  String beg = '' mid = '' end = '';  // solution assumes only lowercase characters are  // present in string. We can easily extend this  // to consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++) {  // if the current character freq is odd  if (count[ch] % 2 == 1) {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = String.valueOf(ch);  // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  } // if the current character freq is even  else {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch] / 2; i++) {  beg += ch;  }  }  }  // end will be reverse of beg  end = beg;  end = reverse(end);  // return palindrome string  return beg + mid + end;  }  static String reverse(String str) {  // convert String to character array   // by using toCharArray   String ans = '';  char[] try1 = str.toCharArray();  for (int i = try1.length - 1; i >= 0; i--) {  ans += try1[i];  }  return ans;  }  // Driver code  public static void main(String[] args) {  String str = 'abbaccd';  System.out.println(findLongestPalindrome(str));  } } // This code is contributed by PrinciRaj1992 
Python3
# Python3 program to find the longest palindrome by removing # or shuffling characters from the given string # Function to find the longest palindrome by removing # or shuffling characters from the given string def findLongestPalindrome(strr): # to stores freq of characters in a string count = [0]*256 # find freq of characters in the input string for i in range(len(strr)): count[ord(strr[i])] += 1 # Any palindromic consists of three parts # beg + mid + end beg = '' mid = '' end = '' # solution assumes only lowercase characters are # present in string. We can easily extend this # to consider any set of characters ch = ord('a') while ch <= ord('z'): # if the current character freq is odd if (count[ch] & 1): # mid will contain only 1 character. It # will be overridden with next character # with odd freq mid = ch # decrement the character freq to make # it even and consider current character # again count[ch] -= 1 ch -= 1 # if the current character freq is even else: # If count is n(an even number) push # n/2 characters to beg and rest # n/2 characters will form part of end # string for i in range(count[ch]//2): beg += chr(ch) ch += 1 # end will be reverse of beg end = beg end = end[::-1] # return palindrome string return beg + chr(mid) + end # Driver code strr = 'abbaccd' print(findLongestPalindrome(strr)) # This code is contributed by mohit kumar 29 
C#
// C# program to find the longest  // palindrome by removing or // shuffling characters from  // the given string using System; class GFG {  // Function to find the longest   // palindrome by removing or   // shuffling characters from   // the given string  static String findLongestPalindrome(String str)   {  // to stores freq of characters in a string  int []count = new int[256];  // find freq of characters   // in the input string  for (int i = 0; i < str.Length; i++)   {  count[str[i]]++;  }  // Any palindromic string consists of   // three parts beg + mid + end  String beg = '' mid = '' end = '';  // solution assumes only lowercase   // characters are present in string.  // We can easily extend this to   // consider any set of characters  for (char ch = 'a'; ch <= 'z'; ch++)     {  // if the current character freq is odd  if (count[ch] % 2 == 1)   {    // mid will contain only 1 character.   // It will be overridden with next   // character with odd freq  mid = String.Join(''ch);  // decrement the character freq to make  // it even and consider current   // character again  count[ch--]--;  }     // if the current character freq is even  else   {    // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (int i = 0; i < count[ch] / 2; i++)   {  beg += ch;  }  }  }  // end will be reverse of beg  end = beg;  end = reverse(end);  // return palindrome string  return beg + mid + end;  }  static String reverse(String str)   {  // convert String to character array   // by using toCharArray   String ans = '';  char[] try1 = str.ToCharArray();  for (int i = try1.Length - 1; i >= 0; i--)   {  ans += try1[i];  }  return ans;  }  // Driver code  public static void Main()   {  String str = 'abbaccd';  Console.WriteLine(findLongestPalindrome(str));  } } // This code is contributed by 29AjayKumar 
JavaScript
<script> // Javascript program to find the  // longest palindrome by removing // or shuffling characters from  // the given string // Function to find the longest  // palindrome by removing // or shuffling characters from // the given string  function findLongestPalindrome(str)  {  // to stores freq of characters   // in a string  let count = new Array(256);  for(let i=0;i<256;i++)  {  count[i]=0;  }    // find freq of characters in   // the input string  for (let i = 0; i < str.length; i++) {  count[str[i].charCodeAt(0)]++;  }    // Any palindromic string consists  // of three parts  // beg + mid + end  let beg = '' mid = '' end = '';    // solution assumes only   // lowercase characters are  // present in string.   // We can easily extend this  // to consider any set of characters  for (let ch = 'a'.charCodeAt(0);   ch <= 'z'.charCodeAt(0); ch++) {  // if the current character freq is odd  if (count[ch] % 2 == 1) {  // mid will contain only 1 character. It  // will be overridden with next character  // with odd freq  mid = String.fromCharCode(ch);    // decrement the character freq to make  // it even and consider current character  // again  count[ch--]--;  } // if the current character freq is even  else {  // If count is n(an even number) push  // n/2 characters to beg string and rest  // n/2 characters will form part of end  // string  for (let i = 0; i < count[ch] / 2; i++)   {  beg += String.fromCharCode(ch);  }  }  }    // end will be reverse of beg  end = beg;  end = reverse(end);    // return palindrome string  return beg + mid + end;  }    function reverse(str)  {  // convert String to character array   // by using toCharArray   let ans = '';  let try1 = str.split('');    for (let i = try1.length - 1; i >= 0; i--) {  ans += try1[i];  }  return ans;  }    // Driver code  let str = 'abbaccd';  document.write(findLongestPalindrome(str));    // This code is contributed by unknown2108   </script> 

Izhod
abcdcba

Časovna zapletenost zgornje rešitve je O(n), kjer je n dolžina niza. Ker je število znakov v abecedi konstantno, ne prispevajo k asimptotični analizi.
Pomožni prostor ki ga uporablja program, je M, kjer je M število znakov ASCII.