logo

Kaj je podatkovna struktura Trie?

Beseda ' poskusi 'je izvleček iz besede' iskanje '. Trie je razvrščena drevesna podatkovna struktura, ki shranjuje nabor nizov. Ima število kazalcev, ki je enako številu znakov abecede v vsakem vozlišču. Lahko išče besedo v slovarju s pomočjo predpone besede. Na primer, če predpostavimo, da so vsi nizi sestavljeni iz črk ' a 'za' z ' v angleški abecedi ima lahko vsako trie vozlišče največ 26 točke.

prečenje drevesa

Trie je znan tudi kot digitalno drevo ali drevo predpon. Položaj vozlišča v Trie določa ključ, s katerim je to vozlišče povezano.

Lastnosti Trie za nabor niza:

  1. Korensko vozlišče trie vedno predstavlja ničelno vozlišče.
  2. Vsak podrejeni vozlišč je razvrščen po abecedi.
  3. Vsako vozlišče ima lahko največ 26 otroci (A do Ž).
  4. Vsako vozlišče (razen korena) lahko shrani eno črko abecede.

Spodnji diagram prikazuje predstavitev trie za zvonec, medved, izvrtino, kij, žogo, stop, stožec in kup.

Preizkusite podatkovno strukturo

Osnovne operacije Trie

V Trie so trije postopki:

  1. Vstavljanje vozlišča
  2. Iskanje vozlišča
  3. Izbris vozlišča

Vstavljanje vozlišča v Trie

Prva operacija je vstavljanje novega vozlišča v trie. Preden začnemo z izvajanjem, je pomembno razumeti nekaj točk:

  1. Vsaka črka vnosnega ključa (besede) je vstavljena kot posamezna v Trie_node. Upoštevajte, da otroci kažejo na naslednjo raven vozlišč Trie.
  2. Niz ključnih znakov deluje kot indeks otrok.
  3. Če ima trenutno vozlišče že referenco na trenutno črko, nastavite trenutno vozlišče na to referenčno vozlišče. V nasprotnem primeru ustvarite novo vozlišče, nastavite črko tako, da bo enaka trenutni črki, in celo začnite trenutno vozlišče s tem novim vozliščem.
  4. Dolžina znaka določa globino poskusa.

Izvedba vstavi novo vozlišče v Trie

 public class Data_Trie { private Node_Trie root; public Data_Trie(){ this.root = new Node_Trie(); } public void insert(String word){ Node_Trie current = root; int length = word.length(); for (int x = 0; x <length; x++){ char l="word.charAt(x);" node_trie node="current.getNode().get(L);" if (node="=" null){ (); current.getnode().put(l, node); } current="node;" current.setword(true); < pre> <h3>Searching a node in Trie</h3> <p>The second operation is to search for a node in a Trie. The searching operation is similar to the insertion operation. The search operation is used to search a key in the trie. The implementation of the searching operation is shown below.</p> <p>Implementation of search a node in the Trie</p> <pre> class Search_Trie { private Node_Trie Prefix_Search(String W) { Node_Trie node = R; for (int x = 0; x <w.length(); x++) { char curletter="W.charAt(x);" if (node.containskey(curletter)) node="node.get(curLetter);" } else return null; node; public boolean search(string w) node_trie !="null" && node.isend(); < pre> <h3>Deletion of a node in the Trie</h3> <p>The Third operation is the deletion of a node in the Trie. Before we begin the implementation, it is important to understand some points:</p> <ol class="points"> <li>If the key is not found in the trie, the delete operation will stop and exit it.</li> <li>If the key is found in the trie, delete it from the trie.</li> </ol> <p> <strong>Implementation of delete a node in the Trie</strong> </p> <pre> public void Node_delete(String W) { Node_delete(R, W, 0); } private boolean Node_delete(Node_Trie current, String W, int Node_index) { if (Node_index == W.length()) { if (!current.isEndOfWord()) { return false; } current.setEndOfWord(false); return current.getChildren().isEmpty(); } char A = W.charAt(Node_index); Node_Trie node = current.getChildren().get(A); if (node == null) { return false; } boolean Current_Node_Delete = Node_delete(node, W, Node_index + 1) &amp;&amp; !node.isEndOfWord(); if (Current_Node_Delete) { current.getChildren().remove(A); return current.getChildren().isEmpty(); } return false; } </pre> <h2>Applications of Trie</h2> <p> <strong>1. Spell Checker</strong> </p> <p>Spell checking is a three-step process. First, look for that word in a dictionary, generate possible suggestions, and then sort the suggestion words with the desired word at the top.</p> <p>Trie is used to store the word in dictionaries. The spell checker can easily be applied in the most efficient way by searching for words on a data structure. Using trie not only makes it easy to see the word in the dictionary, but it is also simple to build an algorithm to include a collection of relevant words or suggestions.</p> <p> <strong>2. Auto-complete</strong> </p> <p>Auto-complete functionality is widely used on text editors, mobile applications, and the Internet. It provides a simple way to find an alternative word to complete the word for the following reasons.</p> <ul> <li>It provides an alphabetical filter of entries by the key of the node.</li> <li>We trace pointers only to get the node that represents the string entered by the user.</li> <li>As soon as you start typing, it tries to complete your input.</li> </ul> <p> <strong>3. Browser history</strong> </p> <p>It is also used to complete the URL in the browser. The browser keeps a history of the URLs of the websites you&apos;ve visited.</p> <h2>Advantages of Trie</h2> <ol class="points"> <li>It can be insert faster and search the string than hash tables and binary search trees.</li> <li>It provides an alphabetical filter of entries by the key of the node.</li> </ol> <h2>Disadvantages of Trie</h2> <ol class="points"> <li>It requires more memory to store the strings.</li> <li>It is slower than the hash table.</li> </ol> <h2>Complete program in C++</h2> <pre> #include #include #include #define N 26 typedef struct TrieNode TrieNode; struct TrieNode { char info; TrieNode* child[N]; int data; }; TrieNode* trie_make(char info) { TrieNode* node = (TrieNode*) calloc (1, sizeof(TrieNode)); for (int i = 0; i <n; i++) node → child[i]="NULL;" data="0;" info="info;" return node; } void free_trienode(trienode* node) { for(int i="0;" < n; if (node !="NULL)" free_trienode(node child[i]); else continue; free(node); trie loop start trienode* trie_insert(trienode* flag, char* word) temp="flag;" for (int word[i] ; int idx="(int)" - 'a'; (temp child[idx]="=" null) child[idx]; }trie flag; search_trie(trienode* position="word[i]" child[position]="=" 0; child[position]; && 1) 1; check_divergence(trienode* len="strlen(word);" (len="=" 0) last_index="0;" len; child[position]) j="0;" <n; j++) (j child[j]) + break; last_index; find_longest_prefix(trienode* (!word || word[0]="=" '') null; longest_prefix="(char*)" calloc 1, sizeof(char)); longest_prefix[i]="word[i];" longest_prefix[len]="" branch_idx="check_divergence(flag," longest_prefix) (branch_idx>= 0) { longest_prefix[branch_idx] = &apos;&apos;; longest_prefix = (char*) realloc (longest_prefix, (branch_idx + 1) * sizeof(char)); } return longest_prefix; } int data_node(TrieNode* flag, char* word) { TrieNode* temp = flag; for (int i = 0; word[i]; i++) { int position = (int) word[i] - &apos;a&apos;; if (temp &#x2192; child[position]) { temp = temp &#x2192; child[position]; } } return temp &#x2192; data; } TrieNode* trie_delete(TrieNode* flag, char* word) { if (!flag) return NULL; if (!word || word[0] == &apos;&apos;) return flag; if (!data_node(flag, word)) { return flag; } TrieNode* temp = flag; char* longest_prefix = find_longest_prefix(flag, word); if (longest_prefix[0] == &apos;&apos;) { free(longest_prefix); return flag; } int i; for (i = 0; longest_prefix[i] != &apos;&apos;; i++) { int position = (int) longest_prefix[i] - &apos;a&apos;; if (temp &#x2192; child[position] != NULL) { temp = temp &#x2192; child[position]; } else { free(longest_prefix); return flag; } } int len = strlen(word); for (; i <len; i++) { int position="(int)" word[i] - 'a'; if (temp → child[position]) trienode* rm_node="temp&#x2192;child[position];" temp child[position]="NULL;" free_trienode(rm_node); } free(longest_prefix); return flag; void print_trie(trienode* flag) (!flag) return; printf('%c ', temp→info); for (int i="0;" < n; print_trie(temp child[i]); search(trienode* flag, char* word) printf('search the word %s: word); (search_trie(flag, 0) printf('not found
'); else printf('found!
'); main() flag="trie_make(&apos;&apos;);" 'oh'); 'way'); 'bag'); 'can'); search(flag, 'ohh'); 'ways'); print_trie(flag); printf('
'); printf('deleting 'hello'...
'); 'can'...
'); free_trienode(flag); 0; pre> <p> <strong>Output</strong> </p> <pre> Search the word ohh: Not Found Search the word bag: Found! Search the word can: Found! Search the word ways: Not Found Search the word way: Found! &#x2192; h &#x2192; e &#x2192; l &#x2192; l &#x2192; o &#x2192; w &#x2192; a &#x2192; y &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;hello&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;can&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g </pre> <hr></len;></n;></pre></w.length();></pre></length;>

Aplikacije Trie

1. Preverjevalnik črkovanja

Preverjanje črkovanja je postopek v treh korakih. Najprej poiščite to besedo v slovarju, ustvarite možne predloge in nato razvrstite predlagane besede z želeno besedo na vrhu.

parseint java

Trie se uporablja za shranjevanje besede v slovarje. Preverjevalnik črkovanja lahko preprosto uporabite na najučinkovitejši način z iskanjem besed v podatkovni strukturi. Z uporabo trie ne samo, da si preprosto ogledate besedo v slovarju, ampak je tudi preprosto sestaviti algoritem za vključitev zbirke ustreznih besed ali predlogov.

javatable

2. Samodokončanje

Funkcionalnost samodokončanja se pogosto uporablja v urejevalnikih besedil, mobilnih aplikacijah in internetu. Omogoča preprost način iskanja alternativne besede za dokončanje besede iz naslednjih razlogov.

  • Zagotavlja abecedni filter vnosov po ključu vozlišča.
  • Kazalcem sledimo samo zato, da dobimo vozlišče, ki predstavlja niz, ki ga vnese uporabnik.
  • Takoj ko začnete tipkati, poskuša dokončati vaš vnos.

3. Zgodovina brskalnika

Uporablja se tudi za dokončanje URL-ja v brskalniku. Brskalnik hrani zgodovino URL-jev spletnih mest, ki ste jih obiskali.

Prednosti Trie

  1. Lahko se vstavi hitreje in preišče niz kot zgoščene tabele in binarna iskalna drevesa.
  2. Zagotavlja abecedni filter vnosov po ključu vozlišča.

Slabosti Trie

  1. Za shranjevanje nizov potrebuje več pomnilnika.
  2. Je počasnejša od zgoščene tabele.

Celoten program v C++

 #include #include #include #define N 26 typedef struct TrieNode TrieNode; struct TrieNode { char info; TrieNode* child[N]; int data; }; TrieNode* trie_make(char info) { TrieNode* node = (TrieNode*) calloc (1, sizeof(TrieNode)); for (int i = 0; i <n; i++) node → child[i]="NULL;" data="0;" info="info;" return node; } void free_trienode(trienode* node) { for(int i="0;" < n; if (node !="NULL)" free_trienode(node child[i]); else continue; free(node); trie loop start trienode* trie_insert(trienode* flag, char* word) temp="flag;" for (int word[i] ; int idx="(int)" - \'a\'; (temp child[idx]="=" null) child[idx]; }trie flag; search_trie(trienode* position="word[i]" child[position]="=" 0; child[position]; && 1) 1; check_divergence(trienode* len="strlen(word);" (len="=" 0) last_index="0;" len; child[position]) j="0;" <n; j++) (j child[j]) + break; last_index; find_longest_prefix(trienode* (!word || word[0]="=" \'\') null; longest_prefix="(char*)" calloc 1, sizeof(char)); longest_prefix[i]="word[i];" longest_prefix[len]="" branch_idx="check_divergence(flag," longest_prefix) (branch_idx>= 0) { longest_prefix[branch_idx] = &apos;&apos;; longest_prefix = (char*) realloc (longest_prefix, (branch_idx + 1) * sizeof(char)); } return longest_prefix; } int data_node(TrieNode* flag, char* word) { TrieNode* temp = flag; for (int i = 0; word[i]; i++) { int position = (int) word[i] - &apos;a&apos;; if (temp &#x2192; child[position]) { temp = temp &#x2192; child[position]; } } return temp &#x2192; data; } TrieNode* trie_delete(TrieNode* flag, char* word) { if (!flag) return NULL; if (!word || word[0] == &apos;&apos;) return flag; if (!data_node(flag, word)) { return flag; } TrieNode* temp = flag; char* longest_prefix = find_longest_prefix(flag, word); if (longest_prefix[0] == &apos;&apos;) { free(longest_prefix); return flag; } int i; for (i = 0; longest_prefix[i] != &apos;&apos;; i++) { int position = (int) longest_prefix[i] - &apos;a&apos;; if (temp &#x2192; child[position] != NULL) { temp = temp &#x2192; child[position]; } else { free(longest_prefix); return flag; } } int len = strlen(word); for (; i <len; i++) { int position="(int)" word[i] - \'a\'; if (temp → child[position]) trienode* rm_node="temp&#x2192;child[position];" temp child[position]="NULL;" free_trienode(rm_node); } free(longest_prefix); return flag; void print_trie(trienode* flag) (!flag) return; printf(\'%c \', temp→info); for (int i="0;" < n; print_trie(temp child[i]); search(trienode* flag, char* word) printf(\'search the word %s: word); (search_trie(flag, 0) printf(\'not found
\'); else printf(\'found!
\'); main() flag="trie_make(&apos;&apos;);" \'oh\'); \'way\'); \'bag\'); \'can\'); search(flag, \'ohh\'); \'ways\'); print_trie(flag); printf(\'
\'); printf(\'deleting \'hello\'...
\'); \'can\'...
\'); free_trienode(flag); 0; pre> <p> <strong>Output</strong> </p> <pre> Search the word ohh: Not Found Search the word bag: Found! Search the word can: Found! Search the word ways: Not Found Search the word way: Found! &#x2192; h &#x2192; e &#x2192; l &#x2192; l &#x2192; o &#x2192; w &#x2192; a &#x2192; y &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;hello&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g &#x2192; c &#x2192; a &#x2192; n deleting the word &apos;can&apos;... &#x2192; w &#x2192; a &#x2192; y &#x2192; h &#x2192; i &#x2192; t &#x2192; e &#x2192; a &#x2192; b &#x2192; a &#x2192; g </pre> <hr></len;></n;>