logo

Korenine enotnosti

Glede na majhno celo število n natisni vse n'th korenine enotnosti do 6 pomembnih števk. V bistvu moramo najti vse korenine enačbe xn- 1.

Primeri:  



Input : n = 1 Output : 1.000000 + i 0.000000 x - 1 = 0  has only one root i.e. 1 Input : 2 Output : 1.000000 + i 0.000000 -1.000000 + i 0.000000 x2 - 1 = 0 has 2 distinct roots i.e. 1 and -1 

Vsaka kompleksna številka naj bi bila korenina enotnosti, če daje 1, ko ga dvignete na neko moč. 
nt. Koren enotnosti je vsaka kompleksna številka, ki daje 1, ko je dvignjen na moč n.  

Mathematically An nth root of unity where n is a positive integer (i.e. n = 1 2 3 …) is a number z satisfying the equation z^n = 1 or  z^n - 1 = 0

Lahko uporabimo Formula De Moivre tukaj   

( Cos x + i Sin x )^k = Cos kx + i Sin kx Setting x = 2*pi/n we can obtain all the nth roots of unity using the fact that Nth roots are set of numbers given by Cos (2*pi*k/n) + i Sin(2*pi*k/n) Where 0 <= k < n

Z zgornjim dejstvom zlahka natisnemo vse nth korenine enotnosti! 



zimsko narečje

Spodaj je program za isto. 

C++
// C++ program to print n'th roots of unity #include    using namespace std; // This function receives an integer n  and prints // all the nth roots of unity void printRoots(int n) {  // theta = 2*pi/n  double theta = M_PI*2/n;  // print all nth roots with 6 significant digits  for(int k=0; k<n; k++)  {  // calculate the real and imaginary part of root  double real = cos(k*theta);  double img = sin(k*theta);  // Print real and imaginary parts  printf('%.6f' real);  img >= 0? printf(' + i '): printf(' - i ');  printf('%.6fn' abs(img));  } } // Driver function to check the program int main() {  printRoots(1);  cout << endl;  printRoots(2);  cout << endl;  printRoots(3);  return 0; } 
Java
// Java program to print n'th roots of unity import java.io.*; class GFG { // This function receives an integer n  and prints // all the nth roots of unity static void printRoots(int n) {  // theta = 2*pi/n  double theta = 3.14*2/n;  // print all nth roots with 6 significant digits  for(int k=0; k<n; k++)  {  // calculate the real and imaginary part of root  double real = Math.cos(k*theta);  double img = Math.sin(k*theta);  // Print real and imaginary parts  System.out.println(real);  if (img >= 0)  System.out.println(' + i ');  else  System.out.println(' - i ');  System.out.println(Math.abs(img));  } } // Driver function to check the program public static void main (String[] args) {  printRoots(1);  //System.out.println();  printRoots(2);  //System.out.println();  printRoots(3); } } // This code is contributed by Raj 
Python3
# Python3 program to print n'th roots of unity import math # This function receives an integer n  and prints # all the nth roots of unity def printRoots(n): # theta = 2*pi/n theta = math.pi * 2 / n # print all nth roots with 6 significant digits for k in range(0 n): # calculate the real and imaginary part of root real = math.cos(k * theta) img = math.sin(k * theta) # Print real and imaginary parts print(real end=' ') if(img >= 0): print(' + i ' end=' ') else: print(' - i ' end=' ') print(abs(img)) # Driver function to check the program if __name__=='__main__': printRoots(1) printRoots(2) printRoots(3) # This code is contributed by # Sanjit_Prasad 
C#
// C# program to print n'th roots of unity  using System; class GFG {  // This function receives an integer n  and prints  // all the nth roots of unity  static void printRoots(int n)  {   // theta = 2*pi/n   double theta = 3.14*2/n;   // print all nth roots with 6 significant digits   for(int k=0; k<n; k++)   {   // calculate the real and imaginary part of root   double real = Math.Cos(k*theta);   double img = Math.Sin(k*theta);   // Print real and imaginary parts   Console.Write(real);   if (img >= 0)   Console.Write(' + i ');   else  Console.Write(' - i ');   Console.WriteLine(Math.Abs(img));   }  }  // Driver function to check the program  static void Main()  {   printRoots(1);     printRoots(2);     printRoots(3);  }  }  // This code is contributed by mits 
PHP
 // PHP program to print n'th roots of unity // This function receives an integer n  // and prints all the nth roots of unity function printRoots($n) { // theta = 2*pi/n $theta = pi() * 2 / $n; // print all nth roots with 6 // significant digits for($k = 0; $k < $n; $k++) { // calculate the real and imaginary  // part of root $real = cos($k * $theta); $img = sin($k * $theta); // Print real and imaginary parts print(round($real 6)); $img >= 0 ? print(' + i '): print(' - i '); printf(round(abs($img) 6) . 'n'); } } // Driver Code printRoots(1); printRoots(2); printRoots(3); // This code is contributed by mits ?> 
JavaScript
<script> // javascript program to print n'th roots of unity // This function receives an integer n  and prints // all the nth roots of unity function printRoots(n) {  // theta = 2*pi/n  var theta = (3.14*2/n);  // print all nth roots with 6 significant digits  for(k = 0; k < n; k++)  {  // calculate the real and imaginary part of root  var real = Math.cos(k*theta);  var img = Math.sin(k*theta);  // Print real and imaginary parts  document.write(real.toFixed(6));  if (img >= 0)  document.write(' + i ');  else  document.write(' - i ');  document.write(Math.abs(img).toFixed(6)+'  
'
); } } // Driver function to check the program printRoots(1); //document.write('
');
printRoots(2); //document.write('
');
printRoots(3); // This code is contributed by shikhasingrajput </script>

Izhod:  

1.000000 + i 0.000000 1.000000 + i 0.000000 -1.000000 + i 0.000000 1.000000 + i 0.000000 -0.500000 + i 0.866025 -0.500000 - i 0.866025


Reference: Wikipedija