logo

Petersonov algoritem za medsebojno izključitev | Set 2 (cikli CPU in spominska ograja)

Problem: Glede na 2 procesa I in J morate napisati program, ki lahko zagotovi medsebojno izključitev med obema brez dodatne podpore strojne opreme.

Izpad ciklov ure CPU

V laičnem smislu, ko je nit čakal na svoj obrat, se je končala v dolgi zanki, ki je stanje testirala milijone krat na sekundo in tako opravila nepotrebno izračunavanje. Obstaja boljši način za čakanje in znan je kot 'Donos' .



Da bi razumeli, kaj potrebujemo, se poglobimo, kako deluje načrtovalec procesov v Linuxu. Tu omenjena ideja je poenostavljena različica načrtovalca. Dejanska izvedba ima veliko zapletov.

Razmislite o naslednjem primeru 
Obstajajo tri procese P1 P2 in P3. Proces P3 je tak, da ima nekaj časa zanko, podobno tistemu v naši kodi, ki ni tako koristna izračunava in obstaja iz zanke le, ko P2 konča izvedbo. Scheduler jih vse postavi v okroglo vrsto Robin. Zdaj recite, da je ura procesorja 1000000/sec in vsakemu postopku v vsaki ponovitvi dodeli 100 ur. Nato se prvi P1 izvaja za 100 ur (0,0001 sekund), nato P2 (0,0001 sekund), ki mu sledi P3 (0,0001 sekund), saj se ta cikel ne ponovi, dokler se P2 ne konča, nato pa sledi izvedba P3 in sčasoma njeno prenehanje.

To je popolna izguba 100 ciklov ure CPU. Da se temu izognemo, se medsebojno odrečemo rezini CPU -ja, tj. Donos, ki se v bistvu konča tokrat, in načrtovalec pobere naslednji postopek za zagon. Zdaj preizkusimo svoje stanje enkrat, nato pa se odpovemo CPU -ju. Glede na to, da naš test traja 25 ciklov ure, prihranimo 75% našega izračuna v časovni rezini. To grafično postaviti
 



Petersonov algoritem za medsebojno izključitev | Set 2 (cikli CPU in spominska ograja)

Glede na hitrost procesorja kot 1MHz je to veliko varčevanja!. 
Različne porazdelitve zagotavljajo različne funkcije za dosego te funkcionalnosti. Linux zagotavlja Sched_yield () .

C
void lock(int self) {  flag[self] = 1;  turn = 1-self;  while (flag[1-self] == 1 &&  turn == 1-self)    // Only change is the addition of  // sched_yield() call  sched_yield(); } 

Spominska ograja.

Koda v prejšnji vadnici je morda delovala na večini sistemov, vendar ni bila stoodstotno pravilna. Logika je bila popolna, vendar večina sodobnih CPU-jev uporablja optimizacijo uspešnosti, ki lahko povzročijo izvedbo zunaj reda. To preurejanje pomnilniških operacij (obremenitve in skladišč) običajno ostane neopaženo znotraj ene same izvedbene nitke, vendar lahko v sočasnih programih povzroči nepredvidljivo vedenje.
Razmislite o tem primeru 



C
 while (f == 0);    // Memory fence required here  print x; 

V zgornjem primeru prevajalnik ocenjuje, da sta dve izjavi neodvisni drug od drugega in s tem poskuša povečati učinkovitost kode tako, da jih ponovno naroči, kar lahko privede do težav za sočasne programe. Da bi se temu izognili, postavimo spominsko ograjo, da prevajalcu namiguje na morebitno razmerje med izjavami čez pregrado.

Torej vrstni red izjav  

zastava [self] = 1; 
preobrat = 1-self; 
medtem ko (preverjanje stanja) 
donos (); 
 

mora biti popolnoma enak, da bo ključavnica delovala, sicer se bo končala v stanju.

Da bi zagotovili, da bodo prevajalci zagotovili navodilo, ki preprečuje naročanje izjav v tej pregradi. V primeru GCC ITS __sync_synchronize () .
Torej spremenjena koda postane 
Popolna izvedba v C:

C++
// Filename: peterson_yieldlock_memoryfence.cpp // Use below command to compile: // g++ -pthread peterson_yieldlock_memoryfence.cpp -o peterson_yieldlock_memoryfence #include   #include #include   std::atomic<int> flag[2]; std::atomic<int> turn; const int MAX = 1e9; int ans = 0; void lock_init() {  // Initialize lock by resetting the desire of  // both the threads to acquire the locks.  // And giving turn to one of them.  flag[0] = flag[1] = 0;  turn = 0; } // Executed before entering critical section void lock(int self) {  // Set flag[self] = 1 saying you want  // to acquire lock  flag[self]=1;  // But first give the other thread the  // chance to acquire lock  turn = 1-self;  // Memory fence to prevent the reordering  // of instructions beyond this barrier.  std::atomic_thread_fence(std::memory_order_seq_cst);  // Wait until the other thread loses the  // desire to acquire lock or it is your  // turn to get the lock.  while (flag[1-self]==1 && turn==1-self)  // Yield to avoid wastage of resources.  std::this_thread::yield(); } // Executed after leaving critical section void unlock(int self) {  // You do not desire to acquire lock in future.  // This will allow the other thread to acquire  // the lock.  flag[self]=0; } // A Sample function run by two threads created // in main() void func(int s) {  int i = 0;  int self = s;  std::cout << 'Thread Entered: ' << self << std::endl;  lock(self);  // Critical section (Only one thread  // can enter here at a time)  for (i=0; i<MAX; i++)  ans++;  unlock(self); } // Driver code int main() {   // Initialize the lock   lock_init();  // Create two threads (both run func)  std::thread t1(func 0);  std::thread t2(func 1);  // Wait for the threads to end.  t1.join();  t2.join();  std::cout << 'Actual Count: ' << ans << ' | Expected Count: ' << MAX*2 << std::endl;  return 0; } 
C
// Filename: peterson_yieldlock_memoryfence.c // Use below command to compile: // gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence #include #include #include 'mythreads.h' int flag[2]; int turn; const int MAX = 1e9; int ans = 0; void lock_init() {  // Initialize lock by resetting the desire of  // both the threads to acquire the locks.  // And giving turn to one of them.  flag[0] = flag[1] = 0;  turn = 0; } // Executed before entering critical section void lock(int self) {  // Set flag[self] = 1 saying you want  // to acquire lock  flag[self]=1;  // But first give the other thread the  // chance to acquire lock  turn = 1-self;  // Memory fence to prevent the reordering  // of instructions beyond this barrier.  __sync_synchronize();  // Wait until the other thread loses the  // desire to acquire lock or it is your  // turn to get the lock.  while (flag[1-self]==1 && turn==1-self)  // Yield to avoid wastage of resources.  sched_yield(); } // Executed after leaving critical section void unlock(int self) {  // You do not desire to acquire lock in future.  // This will allow the other thread to acquire  // the lock.  flag[self]=0; } // A Sample function run by two threads created // in main() void* func(void *s) {  int i = 0;  int self = (int *)s;  printf('Thread Entered: %dn'self);  lock(self);  // Critical section (Only one thread  // can enter here at a time)  for (i=0; i<MAX; i++)  ans++;  unlock(self); } // Driver code int main() {   pthread_t p1 p2;  // Initialize the lock   lock_init();  // Create two threads (both run func)  Pthread_create(&p1 NULL func (void*)0);  Pthread_create(&p2 NULL func (void*)1);  // Wait for the threads to end.  Pthread_join(p1 NULL);  Pthread_join(p2 NULL);  printf('Actual Count: %d | Expected Count:'  ' %dn'ansMAX*2);  return 0; } 
Java
import java.util.concurrent.atomic.AtomicInteger; public class PetersonYieldLockMemoryFence {  static AtomicInteger[] flag = new AtomicInteger[2];  static AtomicInteger turn = new AtomicInteger();  static final int MAX = 1000000000;  static int ans = 0;  static void lockInit() {  flag[0] = new AtomicInteger();  flag[1] = new AtomicInteger();  flag[0].set(0);  flag[1].set(0);  turn.set(0);  }  static void lock(int self) {  flag[self].set(1);  turn.set(1 - self);  // Memory fence to prevent the reordering of instructions beyond this barrier.  // In Java volatile variables provide this guarantee implicitly.  // No direct equivalent to atomic_thread_fence is needed.  while (flag[1 - self].get() == 1 && turn.get() == 1 - self)  Thread.yield();  }  static void unlock(int self) {  flag[self].set(0);  }  static void func(int s) {  int i = 0;  int self = s;  System.out.println('Thread Entered: ' + self);  lock(self);  // Critical section (Only one thread can enter here at a time)  for (i = 0; i < MAX; i++)  ans++;  unlock(self);  }  public static void main(String[] args) {  // Initialize the lock  lockInit();  // Create two threads (both run func)  Thread t1 = new Thread(() -> func(0));  Thread t2 = new Thread(() -> func(1));  // Start the threads  t1.start();  t2.start();  try {  // Wait for the threads to end.  t1.join();  t2.join();  } catch (InterruptedException e) {  e.printStackTrace();  }  System.out.println('Actual Count: ' + ans + ' | Expected Count: ' + MAX * 2);  } } 
Python
import threading flag = [0 0] turn = 0 MAX = 10**9 ans = 0 def lock_init(): # This function initializes the lock by resetting the flags and turn. global flag turn flag = [0 0] turn = 0 def lock(self): # This function is executed before entering the critical section. It sets the flag for the current thread and gives the turn to the other thread. global flag turn flag[self] = 1 turn = 1 - self while flag[1-self] == 1 and turn == 1-self: pass def unlock(self): # This function is executed after leaving the critical section. It resets the flag for the current thread. global flag flag[self] = 0 def func(s): # This function is executed by each thread. It locks the critical section increments the shared variable and then unlocks the critical section. global ans self = s print(f'Thread Entered: {self}') lock(self) for _ in range(MAX): ans += 1 unlock(self) def main(): # This is the main function where the threads are created and started. lock_init() t1 = threading.Thread(target=func args=(0)) t2 = threading.Thread(target=func args=(1)) t1.start() t2.start() t1.join() t2.join() print(f'Actual Count: {ans} | Expected Count: {MAX*2}') if __name__ == '__main__': main() 
JavaScript
class PetersonYieldLockMemoryFence {  static flag = [0 0];  static turn = 0;  static MAX = 1000000000;  static ans = 0;  // Function to acquire the lock  static async lock(self) {  PetersonYieldLockMemoryFence.flag[self] = 1;  PetersonYieldLockMemoryFence.turn = 1 - self;  // Asynchronous loop with a small delay to yield  while (PetersonYieldLockMemoryFence.flag[1 - self] == 1 &&  PetersonYieldLockMemoryFence.turn == 1 - self) {  await new Promise(resolve => setTimeout(resolve 0));  }  }  // Function to release the lock  static unlock(self) {  PetersonYieldLockMemoryFence.flag[self] = 0;  }  // Function representing the critical section  static func(s) {  let i = 0;  let self = s;  console.log('Thread Entered: ' + self);    // Lock the critical section  PetersonYieldLockMemoryFence.lock(self).then(() => {  // Critical section (Only one thread can enter here at a time)  for (i = 0; i < PetersonYieldLockMemoryFence.MAX; i++) {  PetersonYieldLockMemoryFence.ans++;  }    // Release the lock  PetersonYieldLockMemoryFence.unlock(self);  });  }  // Main function  static main() {  // Create two threads (both run func)  const t1 = new Thread(() => PetersonYieldLockMemoryFence.func(0));  const t2 = new Thread(() => PetersonYieldLockMemoryFence.func(1));  // Start the threads  t1.start();  t2.start();  // Wait for the threads to end.  setTimeout(() => {  console.log('Actual Count: ' + PetersonYieldLockMemoryFence.ans + ' | Expected Count: ' + PetersonYieldLockMemoryFence.MAX * 2);  } 1000); // Delay for a while to ensure threads finish  } } // Define a simple Thread class for simulation class Thread {  constructor(func) {  this.func = func;  }  start() {  this.func();  } } // Run the main function PetersonYieldLockMemoryFence.main(); 
C++
// mythread.h (A wrapper header file with assert statements) #ifndef __MYTHREADS_h__ #define __MYTHREADS_h__ #include  #include  #include  // Function to lock a pthread mutex void Pthread_mutex_lock(pthread_mutex_t *m) {  int rc = pthread_mutex_lock(m);  assert(rc == 0); // Assert that the mutex was locked successfully }   // Function to unlock a pthread mutex void Pthread_mutex_unlock(pthread_mutex_t *m) {  int rc = pthread_mutex_unlock(m);  assert(rc == 0); // Assert that the mutex was unlocked successfully }   // Function to create a pthread void Pthread_create(pthread_t *thread const pthread_attr_t *attr   void *(*start_routine)(void*) void *arg) {  int rc = pthread_create(thread attr start_routine arg);  assert(rc == 0); // Assert that the thread was created successfully } // Function to join a pthread void Pthread_join(pthread_t thread void **value_ptr) {  int rc = pthread_join(thread value_ptr);  assert(rc == 0); // Assert that the thread was joined successfully } #endif // __MYTHREADS_h__ 
C
// mythread.h (A wrapper header file with assert // statements) #ifndef __MYTHREADS_h__ #define __MYTHREADS_h__ #include  #include    #include  void Pthread_mutex_lock(pthread_mutex_t *m) {  int rc = pthread_mutex_lock(m);  assert(rc == 0); }   void Pthread_mutex_unlock(pthread_mutex_t *m) {  int rc = pthread_mutex_unlock(m);  assert(rc == 0); }   void Pthread_create(pthread_t *thread const pthread_attr_t *attr   void *(*start_routine)(void*) void *arg) {  int rc = pthread_create(thread attr start_routine arg);  assert(rc == 0); } void Pthread_join(pthread_t thread void **value_ptr) {  int rc = pthread_join(thread value_ptr);  assert(rc == 0); } #endif // __MYTHREADS_h__ 
Python
import threading import ctypes # Function to lock a thread lock def Thread_lock(lock): lock.acquire() # Acquire the lock # No need for assert in Python acquire will raise an exception if it fails # Function to unlock a thread lock def Thread_unlock(lock): lock.release() # Release the lock # No need for assert in Python release will raise an exception if it fails # Function to create a thread def Thread_create(target args=()): thread = threading.Thread(target=target args=args) thread.start() # Start the thread # No need for assert in Python thread.start() will raise an exception if it fails # Function to join a thread def Thread_join(thread): thread.join() # Wait for the thread to finish # No need for assert in Python thread.join() will raise an exception if it fails 

Izhod: 

Thread Entered: 1  
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000