Podana je matrika arr[0..N-1]. Izvesti je treba naslednje operacije.
- posodobitev (l r val) : Dodajte 'val' vsem elementom v matriki od [l r].
- getRangeSum(l r) : Poiščite vsoto vseh elementov v matriki iz [l r].
Na začetku so vsi elementi v matriki 0. Poizvedbe so lahko v poljubnem vrstnem redu, tj. pred vsoto obsega je lahko veliko posodobitev.
primer:
Vnos: N = 5 // {0 0 0 0 0}
Poizvedbe: posodobitev: l = 0 r = 4 val = 2
posodobitev: l = 3 r = 4 val = 3
getRangeSum : l = 2 r = 4Izhod: Vsota elementov obsega [2 4] je 12
Pojasnilo: Matrika po prvi posodobitvi postane {2 2 2 2 2}
Matrika po drugi posodobitvi postane {2 2 2 5 5}
Naivni pristop: Za rešitev težave sledite spodnji zamisli:
V prejšnja objava razpravljali smo o posodobitvi obsega in rešitvah za poizvedovanje točk z uporabo BIT.
rangeUpdate(l r val) : dodamo 'val' elementu pri indeksu 'l'. Odštejemo 'val' od elementa z indeksom 'r+1'.
getElement(index) [ali getSum()]: vrnemo vsoto elementov od 0 do indeksa, ki ga lahko hitro pridobimo z BIT.
RangSum() lahko izračunamo s poizvedbami getSum().
obsegSum(l r) = getSum(r) - getSum(l-1)koliko mest je v Združenih državahPreprosta rešitev je uporaba rešitev, obravnavanih v prejšnja objava . Poizvedba za posodobitev obsega je enaka. Poizvedbo za vsoto obsega lahko dosežete tako, da izvedete poizvedbo za pridobitev za vse elemente v obsegu.
Učinkovit pristop: Za rešitev težave sledite spodnji zamisli:
Vsoto obsega dobimo s pomočjo vsot predpon. Kako zagotoviti, da je posodobitev izvedena tako, da je vsoto predpone mogoče izvesti hitro? Razmislite o situaciji, kjer je vsota predpone [0 k] (kjer je 0<= k < n) is needed after range update on the range [l r]. Three cases arise as k can possibly lie in 3 regions.
- Primer 1 : 0< k < l
- Poizvedba za posodobitev ne bo vplivala na poizvedbo vsota.
- Primer 2 : l<= k <= r
- Razmislite o primeru: Dodajte 2 obsegu [2 4], rezultat pa bi bil: 0 0 2 2 2
Če je k = 3 Vsota iz [0 k] = 4Kako do tega rezultata?
Preprosto dodajte val iz lthkazalo k kthkazalo. Vsota se po poizvedbi za posodobitev poveča za 'val*(k) - val*(l-1)'.
- Primer 3 : k > r
- V tem primeru moramo dodati 'val' iz lthkazalo na rthkazalo. Vsota se poveča za 'val*r – val*(l-1)' zaradi poizvedbe za posodobitev.
Opažanja:
1. primer: je preprosta, saj bi vsota ostala enaka, kot je bila pred posodobitvijo.
java podniz vsebuje
2. primer: Vsota je bila povečana za val*k - val*(l-1). Najdemo lahko 'val', to je podobno iskanju ithelement v posodobitev obsega in članek o poizvedbi točk . Zato vzdržujemo en BIT za posodobitev obsega in poizvedbe točk, ta BIT bo v pomoč pri iskanju vrednosti pri kthkazalo. Zdaj je val * k izračunan, kako ravnati z dodatnim izrazom val*(l-1)?
Za obravnavo tega dodatnega roka vzdržujemo še en BIT (BIT2). Posodobi vrednost * (l-1) pri lthindeks, tako da bo, ko se izvede poizvedba getSum na BIT2, dal rezultat kot val*(l-1).
Primer 3: Vsota v primeru 3 je bila povečana za 'val*r - val *(l-1)' vrednost tega izraza je mogoče pridobiti z uporabo BIT2. Namesto seštevanja odštejemo 'val*(l-1) - val*r', saj lahko dobimo to vrednost iz BIT2 z dodajanjem val*(l-1), kot smo storili v primeru 2, in odštevanjem val*r pri vsaki operaciji posodabljanja.
Posodobi poizvedbo
Posodobitev (BITree1 l val)
Posodobitev (BITree1 r+1 -val)
PosodobitevBIT2(BITree2 l val*(l-1))
UpdateBIT2(BITree2 r+1 -val*r)obseg vsota
getSum(BITTree1 k) *k) - getSum(BITTree2 k)
Za rešitev težave sledite spodnjim korakom:
- Ustvarite dve binarni indeksni drevesi z uporabo dane funkcije constructBITree()
- Če želite najti vsoto v danem obsegu, pokličite funkcijo rangeSum() s parametri kot dani obseg in binarno indeksirana drevesa
- Pokličite funkcijo vsota, ki bo vrnila vsoto v obsegu [0 X]
- Vrni vsoto(R) - vsoto(L-1)
- Znotraj te funkcije pokličite funkcijo getSum(), ki bo vrnila vsoto matrike iz [0 X]
- Vrni getSum(Tree1 x) * x - getSum(tree2 x)
- Znotraj funkcije getSum() ustvarite celoštevilsko vsoto enako nič in povečajte indeks za 1
- Medtem ko je indeks večji od nič, povečajte vsoto za Tree[index]
- Zmanjšajte indeks za (index & (-index)), da premaknete indeks na nadrejeno vozlišče v drevesu
- Povratna vsota
- Izpišite vsoto v danem območju
Spodaj je izvedba zgornjega pristopa:
C++// C++ program to demonstrate Range Update // and Range Queries using BIT #include using namespace std; // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] int getSum(int BITree[] int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. void updateBIT(int BITree[] int n int index int val) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] int sum(int x int BITTree1[] int BITTree2[]) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } void updateRange(int BITTree1[] int BITTree2[] int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } int rangeSum(int l int r int BITTree1[] int BITTree2[]) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } int* constructBITree(int n) { // Create and initialize BITree[] as 0 int* BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver code int main() { int n = 5; // Construct two BIT int *BITTree1 *BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2 r = 4 val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1 r = 4; cout << 'Sum of elements from [' << l << '' << r << '] is '; cout << rangeSum(l r BITTree1 BITTree2) << 'n'; return 0; }
Java // Java program to demonstrate Range Update // and Range Queries using BIT import java.util.*; class GFG { // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] static int getSum(int BITree[] int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in // arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. static void updateBIT(int BITree[] int n int index int val) { // index in BITree[] is 1 more than the index in // arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] static int sum(int x int BITTree1[] int BITTree2[]) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } static void updateRange(int BITTree1[] int BITTree2[] int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } static int rangeSum(int l int r int BITTree1[] int BITTree2[]) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } static int[] constructBITree(int n) { // Create and initialize BITree[] as 0 int[] BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Program to test above function public static void main(String[] args) { int n = 5; // Contwo BIT int[] BITTree1; int[] BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2; r = 4; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1; r = 4; System.out.print('Sum of elements from [' + l + '' + r + '] is '); System.out.print(rangeSum(l r BITTree1 BITTree2) + 'n'); } } // This code is contributed by 29AjayKumar
Python3 # Python3 program to demonstrate Range Update # and Range Queries using BIT # Returns sum of arr[0..index]. This function assumes # that the array is preprocessed and partial sums of # array elements are stored in BITree[] def getSum(BITree: list index: int) -> int: summ = 0 # Initialize result # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse ancestors of BITree[index] while index > 0: # Add current element of BITree to sum summ += BITree[index] # Move index to parent node in getSum View index -= index & (-index) return summ # Updates a node in Binary Index Tree (BITree) at given # index in BITree. The given value 'val' is added to # BITree[i] and all of its ancestors in tree. def updateBit(BITTree: list n: int index: int val: int) -> None: # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse all ancestors and add 'val' while index <= n: # Add 'val' to current node of BI Tree BITTree[index] += val # Update index to that of parent in update View index += index & (-index) # Returns the sum of array from [0 x] def summation(x: int BITTree1: list BITTree2: list) -> int: return (getSum(BITTree1 x) * x) - getSum(BITTree2 x) def updateRange(BITTree1: list BITTree2: list n: int val: int l: int r: int) -> None: # Update Both the Binary Index Trees # As discussed in the article # Update BIT1 updateBit(BITTree1 n l val) updateBit(BITTree1 n r + 1 -val) # Update BIT2 updateBit(BITTree2 n l val * (l - 1)) updateBit(BITTree2 n r + 1 -val * r) def rangeSum(l: int r: int BITTree1: list BITTree2: list) -> int: # Find sum from [0r] then subtract sum # from [0l-1] in order to find sum from # [lr] return summation(r BITTree1 BITTree2) - summation( l - 1 BITTree1 BITTree2) # Driver Code if __name__ == '__main__': n = 5 # BIT1 to get element at any index # in the array BITTree1 = [0] * (n + 1) # BIT 2 maintains the extra term # which needs to be subtracted BITTree2 = [0] * (n + 1) # Add 5 to all the elements from [04] l = 0 r = 4 val = 5 updateRange(BITTree1 BITTree2 n val l r) # Add 10 to all the elements from [24] l = 2 r = 4 val = 10 updateRange(BITTree1 BITTree2 n val l r) # Find sum of all the elements from # [14] l = 1 r = 4 print('Sum of elements from [%d%d] is %d' % (l r rangeSum(l r BITTree1 BITTree2))) # This code is contributed by # sanjeev2552
C# // C# program to demonstrate Range Update // and Range Queries using BIT using System; class GFG { // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] static int getSum(int[] BITree int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than // the index in []arr index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. static void updateBIT(int[] BITree int n int index int val) { // index in BITree[] is 1 more than // the index in []arr index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of // parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] static int sum(int x int[] BITTree1 int[] BITTree2) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } static void updateRange(int[] BITTree1 int[] BITTree2 int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } static int rangeSum(int l int r int[] BITTree1 int[] BITTree2) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } static int[] constructBITree(int n) { // Create and initialize BITree[] as 0 int[] BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Code public static void Main(String[] args) { int n = 5; // Contwo BIT int[] BITTree1; int[] BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2; r = 4; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1; r = 4; Console.Write('Sum of elements from [' + l + '' + r + '] is '); Console.Write(rangeSum(l r BITTree1 BITTree2) + 'n'); } } // This code is contributed by 29AjayKumar
JavaScript <script> // JavaScript program to demonstrate Range Update // and Range Queries using BIT // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] function getSum(BITreeindex) { let sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. function updateBIT(BITreenindexval) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] function sum(xBITTree1BITTree2) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } function updateRange(BITTree1BITTree2nvallr) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } function rangeSum(lrBITTree1BITTree2) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } function constructBITree(n) { // Create and initialize BITree[] as 0 let BITree = new Array(n + 1); for (let i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Program to test above function let n = 5; // Contwo BIT let BITTree1; let BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] let l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2 ; r = 4 ; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1 ; r = 4; document.write('Sum of elements from [' + l + '' + r+ '] is '); document.write(rangeSum(l r BITTree1 BITTree2)+ '
'); // This code is contributed by rag2127 </script>
Izhod
Sum of elements from [14] is 50
Časovna zapletenost : O(q * log(N)), kjer je q število poizvedb.
Pomožni prostor: O(N)