logo

Navojno binarno drevo | Vstavljanje

Smo že razpravljali o Binarno navojno binarno drevo .
Vstavljanje v binarno navojno drevo je podobno vstavljanju v binarno drevo, vendar bomo morali prilagoditi niti po vstavitvi vsakega elementa.

C predstavitev binarnega navojnega vozlišča: 

struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; };

V naslednji razlagi smo upoštevali Binarno iskalno drevo (BST) za vstavljanje, saj je vstavljanje določeno z nekaterimi pravili v BST.
Naj tmp bo na novo vstavljeno vozlišče . Med vstavljanjem lahko pride do treh primerov:



Primer 1: Vstavljanje v prazno drevo  

Levi in ​​desni kazalec tmp bosta nastavljena na NULL in novo vozlišče postane korensko. 

onclick js
root = tmp; tmp -> left = NULL; tmp -> right = NULL;

Primer 2: Ko je novo vozlišče vstavljeno kot levi podrejeni element  

Ko vozlišče vstavimo na njegovo pravo mesto, moramo njegov levi in ​​desni navoj usmeriti na predhodnika in naslednika po vrstnem redu. Vozlišče, ki je bilo inorder naslednik . Torej bosta leva in desna nit novega vozlišča- 

c logično
tmp -> left = par ->left; tmp -> right = par;

Pred vstavitvijo je bil levi kazalec nadrejenega elementa nit, po vstavitvi pa bo povezava, ki kaže na novo vozlišče. 

par -> lthread = false; par -> left = temp;

Naslednji primer prikazuje vozlišče, ki je vstavljeno kot levi podrejeni element svojega nadrejenega. 
 

Navojno binarno drevo | Vstavljanje


Po vstavitvi 13 
 

Navojno binarno drevo | Vstavljanje


Predhodnik 14 postane predhodnik 13, zato leva nit 13 kaže na 10. 
Naslednik 13 je 14, zato desna nit 13 kaže na levega otroka, ki je 13. 
Levi kazalec od 14 ni nit, zdaj kaže na levega otroka, ki je 13.

ddl proti dml

Primer 3: Ko je novo vozlišče vstavljeno kot pravi podrejeni element  

Nadrejeni element tmp je njegov predhodnik po vrstnem redu. Vozlišče, ki je bilo po vrstnem redu naslednik nadrejenega, je zdaj po vrstnem redu naslednik tega vozlišča tmp. Torej bosta leva in desna nit novega vozlišča- 

tmp -> left = par; tmp -> right = par -> right;

Pred vstavitvijo je bil desni kazalec nadrejenega nit, po vstavitvi pa bo povezava, ki kaže na novo vozlišče. 

par -> rthread = false; par -> right = tmp;

Naslednji primer prikazuje vozlišče, ki je vstavljeno kot desni podrejeni element svojega nadrejenega. 
 

Navojno binarno drevo | Vstavljanje


Po 15 vstavljenih 
 

javascript za zanko

Navojno binarno drevo | Vstavljanje


Naslednik 14 postane naslednik 15, zato desna nit 15 kaže na 16 
Predhodnik 15 je 14, zato leva nit 15 kaže na 14. 
Desni kazalec od 14 ni nit, zdaj kaže na desnega otroka, ki je 15.

Implementacija C++ za vstavljanje novega vozlišča v drevo binarnega iskanja z nitkami:  
Všeč mi je standardni BST vložek iščemo vrednost ključa v drevesu. Če je ključ že prisoten, vrnemo, sicer se nov ključ vstavi na točki, kjer se iskanje konča. V BST se iskanje konča, ko najdemo ključ ali ko dosežemo NULL levi ali desni kazalec. Tukaj so vsi levi in ​​desni kazalci NULL nadomeščeni z nitmi, razen levega kazalca prvega vozlišča in desnega kazalca zadnjega vozlišča. Iskanje bo torej neuspešno, ko dosežemo kazalec NULL ali nit.

oblikovati datum v niz

Izvedba:

C++
// Insertion in Threaded Binary Search Tree. #include   using namespace std; struct Node {  struct Node *left *right;  int info;  // False if left pointer points to predecessor  // in Inorder Traversal  bool lthread;  // False if right pointer points to successor  // in Inorder Traversal  bool rthread; }; // Insert a Node in Binary Threaded Tree struct Node *insert(struct Node *root int ikey) {  // Searching for a Node with given value  Node *ptr = root;  Node *par = NULL; // Parent of key to be inserted  while (ptr != NULL)  {  // If key already exists return  if (ikey == (ptr->info))  {  printf('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.  if (ikey < ptr->info)  {  if (ptr -> lthread == false)  ptr = ptr -> left;  else  break;  }  // Moving on right subtree.  else  {  if (ptr->rthread == false)  ptr = ptr -> right;  else  break;  }  }  // Create a new node  Node *tmp = new Node;  tmp -> info = ikey;  tmp -> lthread = true;  tmp -> rthread = true;  if (par == NULL)  {  root = tmp;  tmp -> left = NULL;  tmp -> right = NULL;  }  else if (ikey < (par -> info))  {  tmp -> left = par -> left;  tmp -> right = par;  par -> lthread = false;  par -> left = tmp;  }  else  {  tmp -> left = par;  tmp -> right = par -> right;  par -> rthread = false;  par -> right = tmp;  }  return root; } // Returns inorder successor using rthread struct Node *inorderSuccessor(struct Node *ptr) {  // If rthread is set we can quickly find  if (ptr -> rthread == true)  return ptr->right;  // Else return leftmost child of right subtree  ptr = ptr -> right;  while (ptr -> lthread == false)  ptr = ptr -> left;  return ptr; } // Printing the threaded tree void inorder(struct Node *root) {  if (root == NULL)  printf('Tree is empty');  // Reach leftmost node  struct Node *ptr = root;  while (ptr -> lthread == false)  ptr = ptr -> left;  // One by one print successors  while (ptr != NULL)  {  printf('%d 'ptr -> info);  ptr = inorderSuccessor(ptr);  } } // Driver Program int main() {  struct Node *root = NULL;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root);  return 0; } 
Java
// Java program Insertion in Threaded Binary Search Tree.  import java.util.*; public class solution { static class Node  {   Node left right;   int info;     // False if left pointer points to predecessor   // in Inorder Traversal   boolean lthread;     // False if right pointer points to successor   // in Inorder Traversal   boolean rthread;  };    // Insert a Node in Binary Threaded Tree  static Node insert( Node root int ikey)  {   // Searching for a Node with given value   Node ptr = root;   Node par = null; // Parent of key to be inserted   while (ptr != null)   {   // If key already exists return   if (ikey == (ptr.info))   {   System.out.printf('Duplicate Key !n');   return root;   }     par = ptr; // Update parent pointer     // Moving on left subtree.   if (ikey < ptr.info)   {   if (ptr . lthread == false)   ptr = ptr . left;   else  break;   }     // Moving on right subtree.   else  {   if (ptr.rthread == false)   ptr = ptr . right;   else  break;   }   }     // Create a new node   Node tmp = new Node();   tmp . info = ikey;   tmp . lthread = true;   tmp . rthread = true;     if (par == null)   {   root = tmp;   tmp . left = null;   tmp . right = null;   }   else if (ikey < (par . info))   {   tmp . left = par . left;   tmp . right = par;   par . lthread = false;   par . left = tmp;   }   else  {   tmp . left = par;   tmp . right = par . right;   par . rthread = false;   par . right = tmp;   }     return root;  }    // Returns inorder successor using rthread  static Node inorderSuccessor( Node ptr)  {   // If rthread is set we can quickly find   if (ptr . rthread == true)   return ptr.right;     // Else return leftmost child of right subtree   ptr = ptr . right;   while (ptr . lthread == false)   ptr = ptr . left;   return ptr;  }    // Printing the threaded tree  static void inorder( Node root)  {   if (root == null)   System.out.printf('Tree is empty');     // Reach leftmost node   Node ptr = root;   while (ptr . lthread == false)   ptr = ptr . left;     // One by one print successors   while (ptr != null)   {   System.out.printf('%d 'ptr . info);   ptr = inorderSuccessor(ptr);   }  }    // Driver Program  public static void main(String[] args) {   Node root = null;     root = insert(root 20);   root = insert(root 10);   root = insert(root 30);   root = insert(root 5);   root = insert(root 16);   root = insert(root 14);   root = insert(root 17);   root = insert(root 13);     inorder(root);  }  } //contributed by Arnab Kundu // This code is updated By Susobhan Akhuli 
Python3
# Insertion in Threaded Binary Search Tree.  class newNode: def __init__(self key): # False if left pointer points to  # predecessor in Inorder Traversal  self.info = key self.left = None self.right =None self.lthread = True # False if right pointer points to  # successor in Inorder Traversal  self.rthread = True # Insert a Node in Binary Threaded Tree  def insert(root ikey): # Searching for a Node with given value  ptr = root par = None # Parent of key to be inserted  while ptr != None: # If key already exists return  if ikey == (ptr.info): print('Duplicate Key !') return root par = ptr # Update parent pointer  # Moving on left subtree.  if ikey < ptr.info: if ptr.lthread == False: ptr = ptr.left else: break # Moving on right subtree.  else: if ptr.rthread == False: ptr = ptr.right else: break # Create a new node  tmp = newNode(ikey) if par == None: root = tmp tmp.left = None tmp.right = None elif ikey < (par.info): tmp.left = par.left tmp.right = par par.lthread = False par.left = tmp else: tmp.left = par tmp.right = par.right par.rthread = False par.right = tmp return root # Returns inorder successor using rthread  def inorderSuccessor(ptr): # If rthread is set we can quickly find  if ptr.rthread == True: return ptr.right # Else return leftmost child of  # right subtree  ptr = ptr.right while ptr.lthread == False: ptr = ptr.left return ptr # Printing the threaded tree  def inorder(root): if root == None: print('Tree is empty') # Reach leftmost node  ptr = root while ptr.lthread == False: ptr = ptr.left # One by one print successors  while ptr != None: print(ptr.infoend=' ') ptr = inorderSuccessor(ptr) # Driver Code if __name__ == '__main__': root = None root = insert(root 20) root = insert(root 10) root = insert(root 30) root = insert(root 5) root = insert(root 16) root = insert(root 14) root = insert(root 17) root = insert(root 13) inorder(root) # This code is contributed by PranchalK 
C#
using System; // C# program Insertion in Threaded Binary Search Tree.  public class solution { public class Node {  public Node left right;  public int info;  // False if left pointer points to predecessor   // in Inorder Traversal   public bool lthread;  // False if right pointer points to successor   // in Inorder Traversal   public bool rthread; } // Insert a Node in Binary Threaded Tree  public static Node insert(Node root int ikey) {  // Searching for a Node with given value   Node ptr = root;  Node par = null; // Parent of key to be inserted  while (ptr != null)  {  // If key already exists return   if (ikey == (ptr.info))  {  Console.Write('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.   if (ikey < ptr.info)  {  if (ptr.lthread == false)  {  ptr = ptr.left;  }  else  {  break;  }  }  // Moving on right subtree.   else  {  if (ptr.rthread == false)  {  ptr = ptr.right;  }  else  {  break;  }  }  }  // Create a new node   Node tmp = new Node();  tmp.info = ikey;  tmp.lthread = true;  tmp.rthread = true;  if (par == null)  {  root = tmp;  tmp.left = null;  tmp.right = null;  }  else if (ikey < (par.info))  {  tmp.left = par.left;  tmp.right = par;  par.lthread = false;  par.left = tmp;  }  else  {  tmp.left = par;  tmp.right = par.right;  par.rthread = false;  par.right = tmp;  }  return root; } // Returns inorder successor using rthread  public static Node inorderSuccessor(Node ptr) {  // If rthread is set we can quickly find   if (ptr.rthread == true)  {  return ptr.right;  }  // Else return leftmost child of right subtree   ptr = ptr.right;  while (ptr.lthread == false)  {  ptr = ptr.left;  }  return ptr; } // Printing the threaded tree  public static void inorder(Node root) {  if (root == null)  {  Console.Write('Tree is empty');  }  // Reach leftmost node   Node ptr = root;  while (ptr.lthread == false)  {  ptr = ptr.left;  }  // One by one print successors   while (ptr != null)  {  Console.Write('{0:D} 'ptr.info);  ptr = inorderSuccessor(ptr);  } } // Driver Program  public static void Main(string[] args) {  Node root = null;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root); } }  // This code is contributed by Shrikant13 
JavaScript
<script> // javascript program Insertion in Threaded Binary Search Tree.   class Node {  constructor(){ this.left = null this.right = null;  this.info = 0;  // False if left pointer points to predecessor  // in Inorder Traversal  this.lthread = false;  // False if right pointer points to successor  // in Inorder Traversal  this.rthread = false;  }  }  // Insert a Node in Binary Threaded Tree  function insert(root  ikey) {  // Searching for a Node with given value var ptr = root; var par = null; // Parent of key to be inserted  while (ptr != null) {  // If key already exists return  if (ikey == (ptr.info)) {  document.write('Duplicate Key !n');  return root;  }  par = ptr; // Update parent pointer  // Moving on left subtree.  if (ikey < ptr.info) {  if (ptr.lthread == false)  ptr = ptr.left;  else  break;  }  // Moving on right subtree.  else {  if (ptr.rthread == false)  ptr = ptr.right;  else  break;  }  }  // Create a new node var tmp = new Node();  tmp.info = ikey;  tmp.lthread = true;  tmp.rthread = true;  if (par == null) {  root = tmp;  tmp.left = null;  tmp.right = null;  } else if (ikey < (par.info)) {  tmp.left = par.left;  tmp.right = par;  par.lthread = false;  par.left = tmp;  } else {  tmp.left = par;  tmp.right = par.right;  par.rthread = false;  par.right = tmp;  }  return root;  }  // Returns inorder successor using rthread  function inorderSuccessor(ptr) {  // If rthread is set we can quickly find  if (ptr.rthread == true)  return ptr.right;  // Else return leftmost child of right subtree  ptr = ptr.right;  while (ptr.lthread == false)  ptr = ptr.left;  return ptr;  }  // Printing the threaded tree  function inorder(root) {  if (root == null)  document.write('Tree is empty');  // Reach leftmost node var ptr = root;  while (ptr.lthread == false)  ptr = ptr.left;  // One by one print successors  while (ptr != null) {  document.write(ptr.info+' ');  ptr = inorderSuccessor(ptr);  }  }  // Driver Program   var root = null;  root = insert(root 20);  root = insert(root 10);  root = insert(root 30);  root = insert(root 5);  root = insert(root 16);  root = insert(root 14);  root = insert(root 17);  root = insert(root 13);  inorder(root); // This code contributed by aashish1995 </script> 

Izhod
5 10 13 14 16 17 20 30 

Časovna kompleksnost: O(log N)

Prostorska kompleksnost: O(1) ker ni uporabljenega dodatnega prostora.

 

Ustvari kviz