logo

Bazen niti Java

Bazen niti Java predstavlja skupino delovnih niti, ki čakajo na opravilo in so večkrat ponovno uporabljene.

V primeru skupine niti se ustvari skupina niti s fiksno velikostjo. Ponudnik storitev izvleče nit iz področja niti in ji dodeli opravilo. Po zaključku opravila je nit spet vsebovana v področju niti.

Metode skupine niti

newFixedThreadPool(int s): Metoda ustvari skupino niti s fiksno velikostjo s.

newCachedThreadPool(): Metoda ustvari novo skupino niti, ki po potrebi ustvari nove niti, vendar bo še vedno uporabljalo predhodno ustvarjeno nit, kadar koli bo na voljo za uporabo.

newSingleThreadExecutor(): Metoda ustvari novo nit.

pretvori niz v celo število

Prednost zbirke niti Java

Boljša zmogljivost Prihrani čas, ker ni treba ustvarjati nove niti.

Poraba v realnem času

Uporablja se v Servletu in JSP, kjer vsebnik ustvari skupino niti za obdelavo zahteve.

Primer baze niti Java

Oglejmo si preprost primer področja niti Java z uporabo ExecutorService in Executors.

char + int v Javi

Datoteka: WorkerThread.java

 import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; class WorkerThread implements Runnable { private String message; public WorkerThread(String s){ this.message=s; } public void run() { System.out.println(Thread.currentThread().getName()+' (Start) message = '+message); processmessage();//call processmessage method that sleeps the thread for 2 seconds System.out.println(Thread.currentThread().getName()+' (End)');//prints thread name } private void processmessage() { try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } } } 

Datoteka: TestThreadPool.java

 public class TestThreadPool { public static void main(String[] args) { ExecutorService executor = Executors.newFixedThreadPool(5);//creating a pool of 5 threads for (int i = 0; i <10; i++) { runnable worker="new" workerthread('' + i); executor.execute(worker); calling execute method of executorservice } executor.shutdown(); while (!executor.isterminated()) system.out.println('finished all threads'); < pre> <p> <strong>Output:</strong> </p> <pre>pool-1-thread-1 (Start) message = 0 pool-1-thread-2 (Start) message = 1 pool-1-thread-3 (Start) message = 2 pool-1-thread-5 (Start) message = 4 pool-1-thread-4 (Start) message = 3 pool-1-thread-2 (End) pool-1-thread-2 (Start) message = 5 pool-1-thread-1 (End) pool-1-thread-1 (Start) message = 6 pool-1-thread-3 (End) pool-1-thread-3 (Start) message = 7 pool-1-thread-4 (End) pool-1-thread-4 (Start) message = 8 pool-1-thread-5 (End) pool-1-thread-5 (Start) message = 9 pool-1-thread-2 (End) pool-1-thread-1 (End) pool-1-thread-4 (End) pool-1-thread-3 (End) pool-1-thread-5 (End) Finished all threads </pre> download this example <h2>Thread Pool Example: 2</h2> <p>Let&apos;s see another example of the thread pool.</p> <p> <strong>FileName:</strong> ThreadPoolExample.java</p> <pre> // important import statements import java.util.Date; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.text.SimpleDateFormat; class Tasks implements Runnable { private String taskName; // constructor of the class Tasks public Tasks(String str) { // initializing the field taskName taskName = str; } // Printing the task name and then sleeps for 1 sec // The complete process is getting repeated five times public void run() { try { for (int j = 0; j <= 5; j++) { if (j="=" 0) date dt="new" date(); simpledateformat sdf="new" simpledateformat('hh : mm ss'); prints the initialization time for every task system.out.println('initialization name: '+ taskname + '=" + sdf.format(dt)); } else { Date dt = new Date(); SimpleDateFormat sdf = new SimpleDateFormat(" hh execution system.out.println('time of is complete.'); } catch(interruptedexception ie) ie.printstacktrace(); public class threadpoolexample maximum number threads in thread pool static final int max_th="3;" main method void main(string argvs[]) creating five new tasks runnable rb1="new" tasks('task 1'); rb2="new" 2'); rb3="new" 3'); rb4="new" 4'); rb5="new" 5'); a with size fixed executorservice pl="Executors.newFixedThreadPool(MAX_TH);" passes objects to execute (step 3) pl.execute(rb1); pl.execute(rb2); pl.execute(rb3); pl.execute(rb4); pl.execute(rb5); shutdown pl.shutdown(); < pre> <p> <strong>Output:</strong> </p> <pre> Initialization time for the task name: task 1 = 06 : 13 : 02 Initialization time for the task name: task 2 = 06 : 13 : 02 Initialization time for the task name: task 3 = 06 : 13 : 02 Time of execution for the task name: task 1 = 06 : 13 : 04 Time of execution for the task name: task 2 = 06 : 13 : 04 Time of execution for the task name: task 3 = 06 : 13 : 04 Time of execution for the task name: task 1 = 06 : 13 : 05 Time of execution for the task name: task 2 = 06 : 13 : 05 Time of execution for the task name: task 3 = 06 : 13 : 05 Time of execution for the task name: task 1 = 06 : 13 : 06 Time of execution for the task name: task 2 = 06 : 13 : 06 Time of execution for the task name: task 3 = 06 : 13 : 06 Time of execution for the task name: task 1 = 06 : 13 : 07 Time of execution for the task name: task 2 = 06 : 13 : 07 Time of execution for the task name: task 3 = 06 : 13 : 07 Time of execution for the task name: task 1 = 06 : 13 : 08 Time of execution for the task name: task 2 = 06 : 13 : 08 Time of execution for the task name: task 3 = 06 : 13 : 08 task 2 is complete. Initialization time for the task name: task 4 = 06 : 13 : 09 task 1 is complete. Initialization time for the task name: task 5 = 06 : 13 : 09 task 3 is complete. Time of execution for the task name: task 4 = 06 : 13 : 10 Time of execution for the task name: task 5 = 06 : 13 : 10 Time of execution for the task name: task 4 = 06 : 13 : 11 Time of execution for the task name: task 5 = 06 : 13 : 11 Time of execution for the task name: task 4 = 06 : 13 : 12 Time of execution for the task name: task 5 = 06 : 13 : 12 Time of execution for the task name: task 4 = 06 : 13 : 13 Time of execution for the task name: task 5 = 06 : 13 : 13 Time of execution for the task name: task 4 = 06 : 13 : 14 Time of execution for the task name: task 5 = 06 : 13 : 14 task 4 is complete. task 5 is complete. </pre> <p> <strong>Explanation:</strong> It is evident by looking at the output of the program that tasks 4 and 5 are executed only when the thread has an idle thread. Until then, the extra tasks are put in the queue.</p> <p>The takeaway from the above example is when one wants to execute 50 tasks but is not willing to create 50 threads. In such a case, one can create a pool of 10 threads. Thus, 10 out of 50 tasks are assigned, and the rest are put in the queue. Whenever any thread out of 10 threads becomes idle, it picks up the 11<sup>th </sup>task. The other pending tasks are treated the same way.</p> <h2>Risks involved in Thread Pools</h2> <p>The following are the risk involved in the thread pools.</p> <p> <strong>Deadlock:</strong> It is a known fact that deadlock can come in any program that involves multithreading, and a thread pool introduces another scenario of deadlock. Consider a scenario where all the threads that are executing are waiting for the results from the threads that are blocked and waiting in the queue because of the non-availability of threads for the execution.</p> <p> <strong>Thread Leakage:</strong> Leakage of threads occurs when a thread is being removed from the pool to execute a task but is not returning to it after the completion of the task. For example, when a thread throws the exception and the pool class is not able to catch this exception, then the thread exits and reduces the thread pool size by 1. If the same thing repeats a number of times, then there are fair chances that the pool will become empty, and hence, there are no threads available in the pool for executing other requests.</p> <p> <strong>Resource Thrashing:</strong> A lot of time is wasted in context switching among threads when the size of the thread pool is very large. Whenever there are more threads than the optimal number may cause the starvation problem, and it leads to resource thrashing.</p> <h2>Points to Remember</h2> <p>Do not queue the tasks that are concurrently waiting for the results obtained from the other tasks. It may lead to a deadlock situation, as explained above.</p> <p>Care must be taken whenever threads are used for the operation that is long-lived. It may result in the waiting of thread forever and will finally lead to the leakage of the resource.</p> <p>In the end, the thread pool has to be ended explicitly. If it does not happen, then the program continues to execute, and it never ends. Invoke the shutdown() method on the thread pool to terminate the executor. Note that if someone tries to send another task to the executor after shutdown, it will throw a RejectedExecutionException.</p> <p>One needs to understand the tasks to effectively tune the thread pool. If the given tasks are contrasting, then one should look for pools for executing different varieties of tasks so that one can properly tune them.</p> <p>To reduce the probability of running JVM out of memory, one can control the maximum threads that can run in JVM. The thread pool cannot create new threads after it has reached the maximum limit.</p> <p>A thread pool can use the same used thread if the thread has finished its execution. Thus, the time and resources used for the creation of a new thread are saved.</p> <h2>Tuning the Thread Pool</h2> <p>The accurate size of a thread pool is decided by the number of available processors and the type of tasks the threads have to execute. If a system has the P processors that have only got the computation type processes, then the maximum size of the thread pool of P or P + 1 achieves the maximum efficiency. However, the tasks may have to wait for I/O, and in such a scenario, one has to take into consideration the ratio of the waiting time (W) and the service time (S) for the request; resulting in the maximum size of the pool P * (1 + W / S) for the maximum efficiency.</p> <h2>Conclusion</h2> <p>A thread pool is a very handy tool for organizing applications, especially on the server-side. Concept-wise, a thread pool is very easy to comprehend. However, one may have to look at a lot of issues when dealing with a thread pool. It is because the thread pool comes with some risks involved it (risks are discussed above).</p> <hr></=></pre></10;>
prenesite ta primer

Primer skupine niti: 2

Oglejmo si še en primer bazena niti.

mehurčkasto razvrščanje v Javi

Ime datoteke: ThreadPoolExample.java

 // important import statements import java.util.Date; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.text.SimpleDateFormat; class Tasks implements Runnable { private String taskName; // constructor of the class Tasks public Tasks(String str) { // initializing the field taskName taskName = str; } // Printing the task name and then sleeps for 1 sec // The complete process is getting repeated five times public void run() { try { for (int j = 0; j <= 5; j++) { if (j="=" 0) date dt="new" date(); simpledateformat sdf="new" simpledateformat(\'hh : mm ss\'); prints the initialization time for every task system.out.println(\'initialization name: \'+ taskname + \'=" + sdf.format(dt)); } else { Date dt = new Date(); SimpleDateFormat sdf = new SimpleDateFormat(" hh execution system.out.println(\'time of is complete.\'); } catch(interruptedexception ie) ie.printstacktrace(); public class threadpoolexample maximum number threads in thread pool static final int max_th="3;" main method void main(string argvs[]) creating five new tasks runnable rb1="new" tasks(\'task 1\'); rb2="new" 2\'); rb3="new" 3\'); rb4="new" 4\'); rb5="new" 5\'); a with size fixed executorservice pl="Executors.newFixedThreadPool(MAX_TH);" passes objects to execute (step 3) pl.execute(rb1); pl.execute(rb2); pl.execute(rb3); pl.execute(rb4); pl.execute(rb5); shutdown pl.shutdown(); < pre> <p> <strong>Output:</strong> </p> <pre> Initialization time for the task name: task 1 = 06 : 13 : 02 Initialization time for the task name: task 2 = 06 : 13 : 02 Initialization time for the task name: task 3 = 06 : 13 : 02 Time of execution for the task name: task 1 = 06 : 13 : 04 Time of execution for the task name: task 2 = 06 : 13 : 04 Time of execution for the task name: task 3 = 06 : 13 : 04 Time of execution for the task name: task 1 = 06 : 13 : 05 Time of execution for the task name: task 2 = 06 : 13 : 05 Time of execution for the task name: task 3 = 06 : 13 : 05 Time of execution for the task name: task 1 = 06 : 13 : 06 Time of execution for the task name: task 2 = 06 : 13 : 06 Time of execution for the task name: task 3 = 06 : 13 : 06 Time of execution for the task name: task 1 = 06 : 13 : 07 Time of execution for the task name: task 2 = 06 : 13 : 07 Time of execution for the task name: task 3 = 06 : 13 : 07 Time of execution for the task name: task 1 = 06 : 13 : 08 Time of execution for the task name: task 2 = 06 : 13 : 08 Time of execution for the task name: task 3 = 06 : 13 : 08 task 2 is complete. Initialization time for the task name: task 4 = 06 : 13 : 09 task 1 is complete. Initialization time for the task name: task 5 = 06 : 13 : 09 task 3 is complete. Time of execution for the task name: task 4 = 06 : 13 : 10 Time of execution for the task name: task 5 = 06 : 13 : 10 Time of execution for the task name: task 4 = 06 : 13 : 11 Time of execution for the task name: task 5 = 06 : 13 : 11 Time of execution for the task name: task 4 = 06 : 13 : 12 Time of execution for the task name: task 5 = 06 : 13 : 12 Time of execution for the task name: task 4 = 06 : 13 : 13 Time of execution for the task name: task 5 = 06 : 13 : 13 Time of execution for the task name: task 4 = 06 : 13 : 14 Time of execution for the task name: task 5 = 06 : 13 : 14 task 4 is complete. task 5 is complete. </pre> <p> <strong>Explanation:</strong> It is evident by looking at the output of the program that tasks 4 and 5 are executed only when the thread has an idle thread. Until then, the extra tasks are put in the queue.</p> <p>The takeaway from the above example is when one wants to execute 50 tasks but is not willing to create 50 threads. In such a case, one can create a pool of 10 threads. Thus, 10 out of 50 tasks are assigned, and the rest are put in the queue. Whenever any thread out of 10 threads becomes idle, it picks up the 11<sup>th </sup>task. The other pending tasks are treated the same way.</p> <h2>Risks involved in Thread Pools</h2> <p>The following are the risk involved in the thread pools.</p> <p> <strong>Deadlock:</strong> It is a known fact that deadlock can come in any program that involves multithreading, and a thread pool introduces another scenario of deadlock. Consider a scenario where all the threads that are executing are waiting for the results from the threads that are blocked and waiting in the queue because of the non-availability of threads for the execution.</p> <p> <strong>Thread Leakage:</strong> Leakage of threads occurs when a thread is being removed from the pool to execute a task but is not returning to it after the completion of the task. For example, when a thread throws the exception and the pool class is not able to catch this exception, then the thread exits and reduces the thread pool size by 1. If the same thing repeats a number of times, then there are fair chances that the pool will become empty, and hence, there are no threads available in the pool for executing other requests.</p> <p> <strong>Resource Thrashing:</strong> A lot of time is wasted in context switching among threads when the size of the thread pool is very large. Whenever there are more threads than the optimal number may cause the starvation problem, and it leads to resource thrashing.</p> <h2>Points to Remember</h2> <p>Do not queue the tasks that are concurrently waiting for the results obtained from the other tasks. It may lead to a deadlock situation, as explained above.</p> <p>Care must be taken whenever threads are used for the operation that is long-lived. It may result in the waiting of thread forever and will finally lead to the leakage of the resource.</p> <p>In the end, the thread pool has to be ended explicitly. If it does not happen, then the program continues to execute, and it never ends. Invoke the shutdown() method on the thread pool to terminate the executor. Note that if someone tries to send another task to the executor after shutdown, it will throw a RejectedExecutionException.</p> <p>One needs to understand the tasks to effectively tune the thread pool. If the given tasks are contrasting, then one should look for pools for executing different varieties of tasks so that one can properly tune them.</p> <p>To reduce the probability of running JVM out of memory, one can control the maximum threads that can run in JVM. The thread pool cannot create new threads after it has reached the maximum limit.</p> <p>A thread pool can use the same used thread if the thread has finished its execution. Thus, the time and resources used for the creation of a new thread are saved.</p> <h2>Tuning the Thread Pool</h2> <p>The accurate size of a thread pool is decided by the number of available processors and the type of tasks the threads have to execute. If a system has the P processors that have only got the computation type processes, then the maximum size of the thread pool of P or P + 1 achieves the maximum efficiency. However, the tasks may have to wait for I/O, and in such a scenario, one has to take into consideration the ratio of the waiting time (W) and the service time (S) for the request; resulting in the maximum size of the pool P * (1 + W / S) for the maximum efficiency.</p> <h2>Conclusion</h2> <p>A thread pool is a very handy tool for organizing applications, especially on the server-side. Concept-wise, a thread pool is very easy to comprehend. However, one may have to look at a lot of issues when dealing with a thread pool. It is because the thread pool comes with some risks involved it (risks are discussed above).</p> <hr></=>

Pojasnilo: Če pogledamo izhod programa, je razvidno, da se nalogi 4 in 5 izvedeta le, če ima nit nedejavno nit. Do takrat so dodatna opravila postavljena v čakalno vrsto.

Zaključek iz zgornjega primera je, ko nekdo želi izvesti 50 nalog, vendar ni pripravljen ustvariti 50 niti. V takem primeru lahko ustvarite skupino 10 niti. Tako je dodeljenih 10 od 50 nalog, ostale pa so postavljene v čakalno vrsto. Kadarkoli katera koli od 10 niti postane nedejavna, prevzame 11thnaloga. Druge čakajoče naloge se obravnavajo na enak način.

Tveganja, povezana z zbirkami niti

V nadaljevanju so navedena tveganja, povezana z nabori niti.

Zastoj: Znano je dejstvo, da lahko pride do zastoja v katerem koli programu, ki vključuje večnitnost, in skupina niti uvaja še en scenarij zastoja. Razmislite o scenariju, kjer vse niti, ki se izvajajo, čakajo na rezultate niti, ki so blokirane in čakajo v čakalni vrsti zaradi nerazpoložljivosti niti za izvajanje.

Puščanje niti: Do uhajanja niti pride, ko je nit odstranjena iz področja za izvedbo naloge, vendar se vanj ne vrne po zaključku naloge. Na primer, ko nit vrže izjemo in razred bazena ne more ujeti te izjeme, potem nit zapusti in zmanjša velikost bazena niti za 1. Če se ista stvar ponovi večkrat, potem obstaja velika verjetnost, da bazen bo postal prazen, zato v bazenu ni na voljo niti za izvajanje drugih zahtev.

Razbijanje virov: Veliko časa se izgubi pri preklapljanju konteksta med nitmi, ko je velikost skupine niti zelo velika. Kadarkoli je več niti od optimalnega števila, lahko pride do težave z izčrpanostjo, kar vodi v razbijanje virov.

Točke, ki si jih je treba zapomniti

Ne postavljajte v čakalno vrsto opravil, ki sočasno čakajo na rezultate, pridobljene iz drugih opravil. Kot je razloženo zgoraj, lahko pride do zastoja.

Pri uporabi navojev za delovanje, ki ima dolgo življenjsko dobo, je potrebna previdnost. To lahko povzroči večno čakanje na nit in končno povzroči uhajanje vira.

seznam sort java

Na koncu je treba področje niti izrecno končati. Če se to ne zgodi, se program nadaljuje z izvajanjem in se nikoli ne konča. Prikličite metodo shutdown() na področju niti, da prekinete izvajalca. Upoštevajte, da če nekdo poskusi poslati drugo nalogo izvajalcu po zaustavitvi, bo vrgel RejectedExecutionException.

Za učinkovito nastavitev skupine niti je treba razumeti naloge. Če so dane naloge kontrastne, potem je treba iskati bazene za izvajanje različnih vrst nalog, da jih lahko pravilno prilagodimo.

amisha patel

Da bi zmanjšali verjetnost izvajanja JVM brez pomnilnika, lahko nadzorujete največje število niti, ki se lahko izvajajo v JVM. Področje niti ne more ustvariti novih niti, potem ko doseže največjo omejitev.

Področje niti lahko uporablja isto uporabljeno nit, če je nit končala svojo izvedbo. Tako se prihrani čas in sredstva, ki se porabijo za ustvarjanje nove niti.

Prilagoditev skupine niti

Natančna velikost skupine niti je odvisna od števila razpoložljivih procesorjev in vrste nalog, ki jih morajo izvesti niti. Če ima sistem procesorje P, ki imajo samo procese tipa izračuna, potem največja velikost skupine niti P ali P + 1 doseže največjo učinkovitost. Vendar bodo naloge morda morale čakati na V/I in v takem scenariju je treba upoštevati razmerje med čakalnim časom (W) in časom storitve (S) za zahtevo; kar ima za posledico največjo velikost bazena P * (1 + W / S) za največjo učinkovitost.

Zaključek

Bazen niti je zelo priročno orodje za organiziranje aplikacij, zlasti na strani strežnika. Konceptno je bazen niti zelo enostaven za razumevanje. Vendar pa bo morda treba preučiti veliko težav, ko se ukvarjate s skupino niti. To je zato, ker ima bazen niti nekaj tveganj (tveganja so obravnavana zgoraj).