Glede na nabor elementov ugotovite, kateri permutacija teh elementov bi povzročila najslabši primer združevanja.
Asimptotično združitev vedno traja o (n log n) časa, vendar primeri, ki zahtevajo več primerjav, na splošno traja več časa v praksi. V bistvu moramo najti permutacijo vhodnih elementov, ki bi pri razvrščanju z uporabo značilnega algoritma združevanja privedli do največjega števila primerjav.
Primer:
Consider the below set of elements
{1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16}
Below permutation of the set causes 153
comparisons.
{1 9 5 13 3 11 7 15 2 10 6
14 4 12 8 16}
And an already sorted permutation causes
30 comparisons.
Kako zdaj dobiti najslabši vhod za združitev za vhodno nabor?
Omogočamo, da poskušamo graditi matriko od spodaj navzgor
Naj bo razvrščeni niz {12345678}.
prenesite youtube video z vlc
Da bi ustvarili najslabši primer združitve, bi morala biti operacija združitve, ki je povzročila zgoraj razvrščeno matriko, privedela do največjih primerjav. Da bi to storili, bi morali levi in desni podzemni niz, ki je vključen v delovanje združevanja, shranjevanje nadomestnih elementov razvrščenega niza. to je levi pod-aray {1357} in desni pod-aray naj bo {2468}. Zdaj bo vsak element matrike enkrat primerjan na-vzhodno in to bo povzročilo največje primerjave. Uporabljamo isto logiko tudi za levo in desno pod-niz. Za matriko {1357} najslabši primer bo, ko sta levi in desni pod-aray {15} in {37} in za matriko {2468} Najslabši primer se bo zgodil za {24} in {68}.
Popoln algoritem -
GenerateworstCase (arr [])
- Ustvarite dva pomožna niza levo in desno in v njih shranite nadomestne elemente matrike.
- Klic generiraneworstCase za levo podrejo: GenerateworstCase (levo)
- Klic generiraneworstcase za desno podrejo: GenerateworstCase (desno)
- Kopirajte vse elemente leve in desne podreje nazaj na originalno matriko.
Spodaj je izvedba ideje
seznam v JaviC++
// C++ program to generate Worst Case // of Merge Sort #include using namespace std; // Function to print an array void printArray(int A[] int size) { for(int i = 0; i < size; i++) { cout << A[i] << ' '; } cout << endl; } // Function to join left and right subarray int join(int arr[] int left[] int right[] int l int m int r) { int i; for(i = 0; i <= m - l; i++) arr[i] = left[i]; for(int j = 0; j < r - m; j++) { arr[i + j] = right[j]; } } // Function to store alternate elements in // left and right subarray int split(int arr[] int left[] int right[] int l int m int r) { for(int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for(int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case // of Merge Sort int generateWorstCase(int arr[] int l int r) { if (l < r) { int m = l + (r - l) / 2; // Create two auxiliary arrays int left[m - l + 1]; int right[r - m]; // Store alternate array elements // in left and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // Join left and right subarray join(arr left right l m r); } } // Driver code int main() { // Sorted array int arr[] = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = sizeof(arr) / sizeof(arr[0]); cout << 'Sorted array is n'; printArray(arr n); // Generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); cout << 'nInput array that will result ' << 'in worst case of merge sort is n'; printArray(arr n); return 0; } // This code is contributed by Mayank Tyagi
C // C program to generate Worst Case of Merge Sort #include #include // Function to print an array void printArray(int A[] int size) { for (int i = 0; i < size; i++) printf('%d ' A[i]); printf('n'); } // Function to join left and right subarray int join(int arr[] int left[] int right[] int l int m int r) { int i; // Used in second loop for (i = 0; i <= m - l; i++) arr[i] = left[i]; for (int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in left // and right subarray int split(int arr[] int left[] int right[] int l int m int r) { for (int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for (int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of Merge Sort int generateWorstCase(int arr[] int l int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int left[m - l + 1]; int right[r - m]; // Store alternate array elements in left // and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // join left and right subarray join(arr left right l m r); } } // Driver code int main() { // Sorted array int arr[] = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = sizeof(arr) / sizeof(arr[0]); printf('Sorted array is n'); printArray(arr n); // generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); printf('nInput array that will result in ' 'worst case of merge sort is n'); printArray(arr n); return 0; }
Java // Java program to generate Worst Case of Merge Sort import java.util.Arrays; class GFG { // Function to join left and right subarray static void join(int arr[] int left[] int right[] int l int m int r) { int i; for (i = 0; i <= m - l; i++) arr[i] = left[i]; for (int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in left // and right subarray static void split(int arr[] int left[] int right[] int l int m int r) { for (int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for (int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of Merge Sort static void generateWorstCase(int arr[] int l int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int[] left = new int[m - l + 1]; int[] right = new int[r - m]; // Store alternate array elements in left // and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // join left and right subarray join(arr left right l m r); } } // driver program public static void main (String[] args) { // sorted array int arr[] = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = arr.length; System.out.println('Sorted array is'); System.out.println(Arrays.toString(arr)); // generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); System.out.println('nInput array that will result in n'+ 'worst case of merge sort is n'); System.out.println(Arrays.toString(arr)); } } // Contributed by Pramod Kumar
Python # Python program to generate Worst Case of Merge Sort # Function to join left and right subarray def join(arr left right l m r): i = 0; for i in range(m-l+1): arr[i] = left[i]; i+=1; for j in range(r-m): arr[i + j] = right[j]; # Function to store alternate elements in left # and right subarray def split(arr left right l m r): for i in range(m-l+1): left[i] = arr[i * 2]; for i in range(r-m): right[i] = arr[i * 2 + 1]; # Function to generate Worst Case of Merge Sort def generateWorstCase(arr l r): if (l < r): m = l + (r - l) // 2; # create two auxiliary arrays left = [0 for i in range(m - l + 1)]; right = [0 for i in range(r-m)]; # Store alternate array elements in left # and right subarray split(arr left right l m r); # Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); # join left and right subarray join(arr left right l m r); # driver program if __name__ == '__main__': # sorted array arr = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]; n = len(arr); print('Sorted array is'); print(arr); # generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); print('nInput array that will result in n' + 'worst case of merge sort is '); print(arr); # This code contributed by shikhasingrajput
C# // C# program to generate Worst Case of // Merge Sort using System; class GFG { // Function to join left and right subarray static void join(int []arr int []left int []right int l int m int r) { int i; for (i = 0; i <= m - l; i++) arr[i] = left[i]; for (int j = 0; j < r - m; j++) arr[i + j] = right[j]; } // Function to store alternate elements in // left and right subarray static void split(int []arr int []left int []right int l int m int r) { for (int i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for (int i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case of // Merge Sort static void generateWorstCase(int []arr int l int r) { if (l < r) { int m = l + (r - l) / 2; // create two auxiliary arrays int[] left = new int[m - l + 1]; int[] right = new int[r - m]; // Store alternate array elements // in left and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // join left and right subarray join(arr left right l m r); } } // driver program public static void Main () { // sorted array int []arr = { 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 }; int n = arr.Length; Console.Write('Sorted array isn'); for(int i = 0; i < n; i++) Console.Write(arr[i] + ' '); // generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); Console.Write('nInput array that will ' + 'result in n worst case of' + ' merge sort is n'); for(int i = 0; i < n; i++) Console.Write(arr[i] + ' '); } } // This code is contributed by Smitha
JavaScript <script> // javascript program to generate Worst Case // of Merge Sort // Function to print an array function printArray(Asize) { for(let i = 0; i < size; i++) { document.write(A[i] + ' '); } } // Function to join left and right subarray function join(arrleftrightlmr) { let i; for(i = 0; i <= m - l; i++) arr[i] = left[i]; for(let j = 0; j < r - m; j++) { arr[i + j] = right[j]; } } // Function to store alternate elements in // left and right subarray function split(arrleftrightlmr) { for(let i = 0; i <= m - l; i++) left[i] = arr[i * 2]; for(let i = 0; i < r - m; i++) right[i] = arr[i * 2 + 1]; } // Function to generate Worst Case // of Merge Sort function generateWorstCase(arrlr) { if (l < r) { let m = l + parseInt((r - l) / 2 10); // Create two auxiliary arrays let left = new Array(m - l + 1); let right = new Array(r - m); left.fill(0); right.fill(0); // Store alternate array elements // in left and right subarray split(arr left right l m r); // Recurse first and second halves generateWorstCase(left l m); generateWorstCase(right m + 1 r); // Join left and right subarray join(arr left right l m r); } } let arr = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ]; let n = arr.length; document.write('Sorted array is' + ''); printArray(arr n); // Generate Worst Case of Merge Sort generateWorstCase(arr 0 n - 1); document.write('' + 'Input array that will result ' + 'in worst case of merge sort is' + ''); printArray(arr n); // This code is contributed by vaibhavrabadiya117. </script>
Izhod:
Sorted array is
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Input array that will result in worst
case of merge sort is
1 9 5 13 3 11 7 15 2 10 6 14 4 12 8 16
Časovna kompleksnost: O (N Logn)
Pomožni prostor: o (n)
Reference - Preliva sklada