Predpogoji: Grundy številke/številke in Mex
Videli smo že v Set 2 (https://www.geeksforgeeks.org/dsa/combinatorial-game-theory-set-2-game-nim/), da lahko najdemo, kdo zmaga v igri NIM, ne da bi dejansko igrali igro.
Recimo, da nekoliko spremenimo klasično igro NIM. Tokrat lahko vsak igralec odstrani samo 1 2 ali 3 kamne (in ne nobenega števila kamnov kot v klasični igri NIM). Ali lahko napovemo, kdo bo zmagal?
Da, zmagovalca lahko napovemo s pomočjo teorema Sprague-Grundy.
Kaj je teorem Sprague-Grundy?
Recimo, da obstaja sestavljena igra (več kot ena pod igri), sestavljena iz N pod igriščih in dveh igralcev A in B., nato izrek Sprague-Grundy pravi, da če igrata A in B optimalno igrata (tj. Ne delata nobenih napak), potem igralec, ki se začne najprej, zagotovi, da bo zmagal, če je XOR v vsaki igri v igri. V nasprotnem primeru, če XOR oceni na nič, bo igralec A vsekakor izgubil ne glede na vse.
Kako nanesti Sprague Grundy Teorem?
Lahko uporabimo teorem Sprague-grundy v katerem koli nepristranska igra in to reši. Osnovni koraki so navedeni na naslednji način:
- Razdelite kompozitno igro na pod igro.
- Nato za vsako pod igro izračunate Grundyjevo številko na tem položaju.
- Nato izračunajte xor vseh izračunanih grundy števil.
- Če vrednost XOR ni nič, potem bo igralec, ki bo naredil preobrat (prvi igralec), zmagal drugače, ki mu je namenjen izgubi ne glede na vse.
Primer igre: Igra se začne s 3 piloti, ki imajo 3 4 in 5 kamnov, igralec pa se lahko premakne po kakršnem koli pozitivnem številu kamnov do 3 samo od katerega koli od pilotov [pod pogojem, da ima kup toliko količine kamnov]. Zadnji igralec, ki se je premaknil, zmaga. Kateri igralec zmaga v igri ob predpostavki, da oba igralca igrata optimalno?
Kako povedati, kdo bo zmagal z uporabo teorema Sprague-Grundy?
Kot lahko vidimo, je ta igra sama sestavljena iz več pod iger.
Prvi korak: Pod igrami se lahko štejejo za vsake gomile.
Drugi korak: Iz spodnje tabele vidimo, da
Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1
Že smo videli, kako izračunati grundy številke te igre v Prejšnji članek.
Tretji korak: Xor 3 0 1 = 2
Četrti korak: Ker je XOR številka ničle, zato lahko rečemo, da bo zmagal prvi igralec.
Spodaj je program, ki izvaja nad 4 koraki.
C++/* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ #include using namespace std; /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ #define PLAYER1 1 #define PLAYER2 2 // A Function to calculate Mex of all the values in that set int calculateMex(unordered_set<int> Set) { int Mex = 0; while (Set.find(Mex) != Set.end()) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); unordered_set<int> Set; // A Hash Table for (int i=1; i<=3; i++) Set.insert (calculateGrundy (n-i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i=1; i<=n-1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) printf('Player 1 will winn'); else printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) printf('Player 2 will winn'); else printf('Player 1 will winn'); } return; } // Driver program to test above functions int main() { // Test Case 1 int piles[] = {3 4 5}; int n = sizeof(piles)/sizeof(piles[0]); // Find the maximum element int maximum = *max_element(piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ return (0); }
Java import java.util.*; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<Integer> Set) { int Mex = 0; while (Set.contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<Integer> Set = new HashSet<Integer>(); for (int i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) System.out.printf('Player 1 will winn'); else System.out.printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) System.out.printf('Player 2 will winn'); else System.out.printf('Player 1 will winn'); } return; } // Driver code public static void main(String[] args) { // Test Case 1 int piles[] = {3 4 5}; int n = piles.length; // Find the maximum element int maximum = Arrays.stream(piles).max().getAsInt(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[] = new int[maximum + 1]; Arrays.fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by PrinciRaj1992
Python3 ''' Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing''' PLAYER1 = 1 PLAYER2 = 2 # A Function to calculate Mex of all # the values in that set def calculateMex(Set): Mex = 0; while (Mex in Set): Mex += 1 return (Mex) # A function to Compute Grundy Number of 'n' def calculateGrundy(n Grundy): Grundy[0] = 0 Grundy[1] = 1 Grundy[2] = 2 Grundy[3] = 3 if (Grundy[n] != -1): return (Grundy[n]) # A Hash Table Set = set() for i in range(1 4): Set.add(calculateGrundy(n - i Grundy)) # Store the result Grundy[n] = calculateMex(Set) return (Grundy[n]) # A function to declare the winner of the game def declareWinner(whoseTurn piles Grundy n): xorValue = Grundy[piles[0]]; for i in range(1 n): xorValue = (xorValue ^ Grundy[piles[i]]) if (xorValue != 0): if (whoseTurn == PLAYER1): print('Player 1 will winn'); else: print('Player 2 will winn'); else: if (whoseTurn == PLAYER1): print('Player 2 will winn'); else: print('Player 1 will winn'); # Driver code if __name__=='__main__': # Test Case 1 piles = [ 3 4 5 ] n = len(piles) # Find the maximum element maximum = max(piles) # An array to cache the sub-problems so that # re-computation of same sub-problems is avoided Grundy = [-1 for i in range(maximum + 1)]; # Calculate Grundy Value of piles[i] and store it for i in range(n): calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); ''' Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); ''' # This code is contributed by rutvik_56
C# using System; using System.Linq; using System.Collections.Generic; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; //static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<int> Set) { int Mex = 0; while (Set.Contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int []Grundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<int> Set = new HashSet<int>(); for (int i = 1; i <= 3; i++) Set.Add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int []piles int []Grundy int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) Console.Write('Player 1 will winn'); else Console.Write('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) Console.Write('Player 2 will winn'); else Console.Write('Player 1 will winn'); } return; } // Driver code static void Main() { // Test Case 1 int []piles = {3 4 5}; int n = piles.Length; // Find the maximum element int maximum = piles.Max(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int []Grundy = new int[maximum + 1]; Array.Fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by mits
JavaScript <script> /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ let PLAYER1 = 1; let PLAYER2 = 2; // A Function to calculate Mex of all the values in that set function calculateMex(Set) { let Mex = 0; while (Set.has(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' function calculateGrundy(nGrundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table let Set = new Set(); for (let i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game function declareWinner(whoseTurnpilesGrundyn) { let xorValue = Grundy[piles[0]]; for (let i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) document.write('Player 1 will win
'); else document.write('Player 2 will win
'); } else { if (whoseTurn == PLAYER1) document.write('Player 2 will win
'); else document.write('Player 1 will win
'); } return; } // Driver code // Test Case 1 let piles = [3 4 5]; let n = piles.length; // Find the maximum element let maximum = Math.max(...piles) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array(maximum + 1); for(let i=0;i<maximum+1;i++) Grundy[i]=0; // Calculate Grundy Value of piles[i] and store it for (let i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 </script>
Izhod:
Player 1 will win
Časovna kompleksnost: O (n^2), kjer je n največje število kamnov v kupu.
Vesoljska kompleksnost: O (n) Ker se grundy matrika uporablja za shranjevanje rezultatov podproblemov, da se izognemo odvečnim izračunom in potrebuje O (n) prostor.
Reference:
https://en.wikipedia.org/wiki/Sprague%E2%80%93Grundy_theorem
Vaja za bralce: Razmislite o spodnji igri.
Igro igrata dva igralca z N Integers A1 A2 .. An. Igralec izbere, da ga izbere celo število deli z 2 3 ali 6 in nato vzame tla. Če celo število postane 0, se odstrani. Zadnji igralec, ki se je premaknil, zmaga. Kateri igralec zmaga v igri, če oba igralca igrata optimalno?
Namig: Oglejte si primer 3 Prejšnji članek.